精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xoy中,已知圆C1:(x-1)2+y2=25和圆C2:(x-4)2+(y-5)2=16
(1)若直线l1经过点P(2,-1)和圆C1的圆心,求直线l1的方程;
(2)若点P(2,-1)为圆C1的弦AB的中点,求直线AB的方程;
(3)若直线l过点A(6,0),且被圆C2截得的弦长为4
3
,求直线l的方程.
分析:(1)求出圆C1:(x-1)2+y2=25的圆心坐标,利用两点式求出直线直线l1的方程;
(2)求出点P(2,-1)为圆C1的连线的斜率,即可求解弦AB的斜率,然后求直线AB的方程;
(3)设出直线l过点A(6,0)的方程,利用圆C2的半径、半弦长以及圆心到直线的距离满足勾股定理求出直线的斜率,然后求直线l的方程.
解答:解:(1)因为在平面直角坐标系xoy中,已知圆C1:(x-1)2+y2=25的圆心坐标(1,0)
直线l1经过点P(2,-1)和圆C1的圆心,所以直线l1的方程为:
y-0
x-1
=
1
1-2
,即x+y-1=0;
(2)点P(2,-1)为圆C1的圆心的连线的斜率为:k=
0+1
1-2
=-1,所以AB的斜率为:1,
所以直线AB的方程为y+1=x-2,
直线AB的方程:x-y-3=0;
(3)因为直线l过点A(6,0),且被圆C2截得的弦长为4
3
,圆C2:(x-4)2+(y-5)2=16
的圆心坐标(4,5),半径为4,设直线l的方程为y=k(x-6),弦心距为:
|4k-5-6k|
1+k2
=
|2k+5|
1+k2

圆C2的半径、半弦长以及圆心到直线的距离满足勾股定理,
所以16=(2
3
)
2
+(
|2k+5|
1+k2
)
2
,解得k=-
21
20

所求直线的方程为:21x+20y-126=0.
点评:本题考查直线与圆的位置关系,圆心到直线的距离公式的应用,直线方程的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案