精英家教网 > 高中数学 > 题目详情

【题目】小王在某社交网 络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.

(1)若小王发放5元的红包2个,求甲恰得1个的概率;

(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X,求X的分布列.

【答案】1;(2)分布列详见解析,.

【解析】

试题本题主要考查二项分布、离散型随机变量的分布列和数学期望等基础知识,意在考查考生的分析问题解决问题的能力、运算求解能力.第一问,发放一次红包,每个人得到的概率为,两次中,其中一次得到,一次没得到,所以;第二问,先写出X的所有可能值,当时,说明5元的2个和10元的1个都没有得到,当时,说明5元的2个红包得到了1个,10元的没有得到,当时,说明5元的2个得到了,10元的没有得到,或者5元的2个都没有得到,10元的得到了,当时,5元的2个红包得到了1个,10元的得到了,当时,说明5元的2个都得到了,10元的1个也得到了,分别利用二项分布和独立事件求出概率,最后利用求出数学期望.

试题解析:()设甲恰得一个红包为事件A4

X的所有可能值为05101520

10

X的分布列:

X

0

5

10

15

20

P






E(X)10×15×20×12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

Ⅰ)当,求曲线在点处的切线方程;

Ⅱ)求函数的单调区间;

Ⅲ)已知函数处取得极小值,不等式的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行绿水青山就是金山银山,坚持人与自然和谐共生的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,现从参与调查的人群中随机选出20人的样本,并将这20人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示

1)求a的值.

2)根据频率分布直方图,估计参与调查人群的样本数据的分位数(保留两位小数).

3)若从年龄在的人中随机抽取两位,求两人恰有一人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·浙江卷)已知数列{an}满足a1an1=an (nN*).

(1)证明:1≤≤2(nN*)

(2)设数列{ }的前n项和为Sn,证明: (nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,且离心率为 为椭圆上任意一点,当时, 的面积为1.

(1)求椭圆的方程;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线 分别与椭圆交于点 ,设直线的斜率为,直线的斜率为,求证: 为定值.

【答案】(1);(2)

【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;

(2)设

当直线的斜率不存在时,可得

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去通过运算可得

,同理可得,由此得到直线的斜率为

直线的斜率为,进而可得.

试题解析:(1)设由题

解得,则

椭圆的方程为.

(2)设

当直线的斜率不存在时,设,则

直线的方程为代入,可得

,则

直线的斜率为,直线的斜率为

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去可得:

,则,代入上述方程可得

,则

设直线的方程为,同理可得

直线的斜率为

直线的斜率为

.

所以,直线的斜率之积为定值,即.

型】解答
束】
21

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

查看答案和解析>>

同步练习册答案