【题目】已知集合M={x|9x﹣43x+1+27=0},N={x|log2(x+1)+log2x=log26},则M、N的关系是( )
A.MN
B.NM
C.M=N
D.不确定
【答案】B
【解析】解:集合M={x|9x﹣43x+1+27=0},可得9x﹣43x+1+27=0,即(3x)2﹣123x+27=0,解得3x=3,3x=9,解得x=1,x=2.
M={1,2}.
N={x|log2(x+1)+log2x=log26},
log2(x+1)+log2x=log26,
可得x(x+1)=6,x>0.
解得x=2.N={2}.
∴NM.
故选:B.
【考点精析】本题主要考查了集合的表示方法-特定字母法和函数的零点与方程根的关系的相关知识点,需要掌握①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合;二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x2﹣1|+x2﹣kx.
(1)若k=2时,求出函数f(x)的单调区间及最小值;
(2)若f(x)≥0恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为
ξ | 0 | 1 | 2 | 3 |
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求,的值;
(Ⅲ)求数学期望ξ。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+ )= ,曲线C的参数方程为:
(1)写出直线l和曲线C的普通方程;
(2)若直线l和曲线C相交于A,B两点,定点P(﹣1,2),求线段|AB|和|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,若方程f(x+1)=|x2+2x﹣3|的实根分别为x1 , x2 , …,xn , 则x1+x2+…+xn=( )
A.n
B.﹣n
C.﹣2n
D.﹣3n
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com