精英家教网 > 高中数学 > 题目详情
已知函数,其图象为曲线,点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当点时,的方程为,求实数的值;
(Ⅲ)设切线的斜率分别为,试问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.
(1)函数的单调递增区间是;单调递减区间是;(2);(3).

试题分析:(1)将代入到函数中,求导,解出的取值范围,从而能够写出函数的单增区间和单减区间;(2)将切点代入到函数表达式中,求出的关系,再将代入到中,求出最终的值;(3)设,写出函数在处的切线,并与曲线联立,得到关于的方程,再设,根据韦达定理表示出,再利用,得出,化简成,则能够得到,进而能够求出的值.
试题解析:(1)当时,
,解得
,解得
∴函数的单调递增区间是;单调递减区间是.
(Ⅱ)由题意得,即
解得 
∴实数的值分别是
(Ⅲ)设,则
联立方程组
由②代入①整理得 
,则由韦达定理得,∴
由题意得
假设存在常数使得,则
,∴,解得
所以当时,存在常数使得
时,不存在,使得 .          
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

有两个投资项目,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)

(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式;
(2)现将万元投资A项目, 10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的部分图象如图所示,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数 ,给出下列命题:
(1)必是偶函数;
(2)当时,的图象关于直线对称;
(3)若,则在区间上是增函数;
(4)有最大值.
其中正确的命题序号是(     )
A.(3)B.(2)(3)C.(3)(4)D.(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,(.若,且函数的图像关于点对称,并在处取得最小值,则正实数的值构成的集合是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线轴的垂线,垂足分别为

(1)写出的单调递减区间(不必证明);
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;
(3)设为坐标原点,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数和点,过点作曲线的两条切线,切点分别为
(Ⅰ)设,试求函数的表达式;
(Ⅱ)是否存在,使得三点共线.若存在,求出的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数,在区间内总存在个实数,使得不等式成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是定义在上的奇函数. 当时,,则不等式的解集用区间表示为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则按照从大到小排列为______.

查看答案和解析>>

同步练习册答案