精英家教网 > 高中数学 > 题目详情
在ABC中,角A,B,C的对边分别为a,b,c,向量
m
=(cos(A-B),sin(A-B)),向量
n
=(cosB,-sinB),且
m
n
=-
4
5

(Ⅰ)求sinA的值;
(Ⅱ)若a=9,b=5,求向量
BC
BA
方向上的投影.
分析:(I)由向量数量积的坐标运算公式和两角差的余弦公式,化简得
m
n
=cosA=-
4
5
,再根据0<A<π,利用同角三角函数的平方关系,即可算出sinA的值;
(II)根据正弦定理
a
sinA
=
b
sinB
的式子,算出sinB=
1
3
,进而得到cosB=
2
2
3
.再根据向量投影的定义加以计算,可得
BC
BA
方向上的投影值.
解答:解:(I)∵
m
=(cos(A-B),sin(A-B)),
n
=(cosB,-sinB),
∴由
m
n
=-
4
5
,得cos(A-B)cosB-sin(A-B)sinB=-
4
5

可得cos[(A-B)+B]=-
4
5

cosA=-
4
5

∵0<A<π,
∴sinA=
1-cos 2A
=
1-(-
4
5
)
2
=
3
5

(II)由正弦定理
a
sinA
=
b
sinB

可得sinB=
bsinA
a
=
3
5
9
=
1
3

∵a>b可得A>B,
cosB=
1-sin2B
=
1-(
1
3
)
2
=
2
2
3

∴向量
BC
BA
方向上的投影为
|BC|
•cos∠ABC
=acosB=9×
2
2
3
=6
2
点评:本题着重考查了向量数量积公式、两角差的余弦公式、同角三角函数的基本关系、正弦定理和向量投影的定义等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(
3
sinωx+cosωx)cosωx-
1
2
,其中ω>0,f(x)的最小正周期为4π.
(Ⅰ)若函数y=g(x)与y=f(x)的图象关于直线x=π对称,求y=g(x)图象的对称中心;
(Ⅱ)若在△ABC中,角A,B,C的对边分别是a,b,c,且(2a-c)cosB=b•cosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c.已知向量
m
=(sin 
A
2
,cos 
A
2
)
n
=(cos 
A
2
,-cos 
A
2
)
,且2
m
n
+|
m
|=
2
2
AB
AC
=1

(1)求角A的大小
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且2ccos2
A
2
=b+c,则△ABC的形状是(  )
A、正三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(coswx,sinwx)
n
=(coswx,
3
coswx)
,其中0<w<2,函数f(x)=
m
n
-
1
2
,直线x=
π
6
为其图象的一条对称轴.
(Ⅰ)求函数f(x)的表达式及其单调递减区间;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,已知f(
A
2
)=1
,b=2,S△ABC=2
3
,求a值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a,b,c.若
AB
AC
=
CA
CB
=k(k∈R)

(1)判断△ABC的形状;
(2)若k=2,求b的值.

查看答案和解析>>

同步练习册答案