精英家教网 > 高中数学 > 题目详情

【题目】已知函数(为自然对数的底数).

1)若对于任意实数恒成立,试确定的取值范围;

2)当时,函数上是否存在极值?若存在,请求出这个极值;若不存在,请说明理由.

【答案】(1);(2)见解析

【解析】

1)利用参变分离转化为对应函数最值问题,再利用导数研究对应函数最值,即得结果,(2)利用导数研究函数单调性,根据单调性确定函数极值是否存在.

1)∵对于任意实数恒成立,

∴若,则为任意实数时,恒成立;

恒成立,即,在上恒成立,

,则

时,,则上单调递增;

时,,则上单调递减;

所以当时,取得最大值,

所以的取值范围为.

综上,对于任意实数恒成立的实数的取值范围为.

2)依题意,

所以

,则,当

上单调增函数,因此上的最小值为

所以在上,

所以上是增函数,

上不存在极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围分组,得到的频率分布直方图如图:

(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);

(2)若对得分在前的学生进行校内奖励,估计获奖分数线;

(3)若这60名学生中男女生比例为,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面列联表,是否有的把握认为“成绩良好”与“性别”有关?

成绩良好

成绩一般

合计

男生

女生

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线l过点且与x轴不重合,l交圆两点,过点的平行线交于点.

1)证明为定值,并写出点的轨迹方程;

2)设点的轨迹为曲线,直线与曲线交于两点,点为椭圆上一点,若是以为底边的等腰三角形,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示不大于实数的最大整数,函数,若关于的方程有且只有5个解,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)求在区间上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情况如上:

所以,的单调递减区间是,单调递增区间是.

(Ⅱ)当,即时,函数上单调递增,

所以在区间上的最小值为.

,即时,

由(Ⅰ)知上单调递减,在上单调递增,

所以在区间上的最小值为.

,即时,函数上单调递减,

所以在区间上的最小值为.

综上,当时,的最小值为

时,的最小值为

时,的最小值为.

型】解答
束】
19

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

1)求的方程;

2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种类型的题目有5个选项,其中有3个正确选项,满分5分.赋分标准为“选对1个得2分,选对2个得4分,选对3个得5分,每选错1个扣3分,最低得分为0分”在某校的一次考试中出现了一道这种类型的题目,已知此题的正确答案为,假定考生作答的答案中的选项个数不超过3个.

(1)若甲同学无法判断所有选项,他决定在这5个选项中任选3个作为答案,求甲同学获得0分的概率;

(2)若乙同学只能判断选项是正确的,现在他有两种选择:一种是将AD作为答案,另一种是在这3个选项中任选一个与组成一个含有3个选项的答案,则乙同学的最佳选择是哪一种,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1的圆心在坐标原点O,且恰好与直线相切.

()求圆C1的标准方程;

()设点A为圆上一动点,AN垂直于x轴于点N,若动点Q满足

(其中m为非零常数),试求动点Q的轨迹方程;

()()的结论下,当m时,得到动点Q的轨迹为曲线C,与l1垂直的直线l与曲线C交于BD两点,求OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,动点在线段上运动,且有.

(1)若,求证:

(2)若二面角的平面角的余弦值为,求实数的值.

查看答案和解析>>

同步练习册答案