精英家教网 > 高中数学 > 题目详情

【题目】设各项都是正数的等比数列{}Sn为前n项和,且S10=10S30=70,那么S40=______

【答案】150

【解析】

根据数列{}是等比数列,Sn为前n项和,且S10=10≠0可得,S10,S20﹣S10,S30﹣S20,S40﹣S30也成等比数列,即可得到结果.

根据数列{}是等比数列,Sn为前n项和,且S10=10≠0可得数列S10,S20﹣S10,S30﹣S20,S40﹣S30成等比数列,

因此有(S20﹣S102=S10(S30﹣S20),即(S20﹣10)2=10(70﹣S20),

故S20=﹣20或S20=30,又 S20>0,因此S20=30,S20﹣S10=20,S30﹣S20=40,

故S40﹣S30=80,S40=150.

故答案为:150.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1,且,数列满足,对任意,都有.

(1)求数列的通项公式;

(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,(a∈R). (Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在(0, )上无零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,已知,且对于任意正整数n都有

(1)令,求数列的通项公式;

(2)求的通项公式;

(3)设是一个正数,无论为何值,都有一个正整数使成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.

)求抽取的卡片上的数字满足的概率;

)求抽取的卡片上的数字不完全相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{}的前n项和Sn=2-2

1)求数列{}的通项公式;

2)若bn=logSn=b1+b2++bn,对任意正整数nSn+n+m0恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校对高二年段的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为200.根据一般标准,高二男生体重超过65kg属于偏胖,低于55kg属于偏瘦.观察图形的信息,回答下列问题:

(1)求体重在[60,65)内的频率,并补全频率分布直方图;

(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?

(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级共有学生名,为了解学生某次月考的情况,抽取了部分学生的成绩(得分均为整数,满分为分)进行统计,绘制出如下尚未完成的频率分布表:

分组

频数

频率

(1)补充完整题中的频率分布表;

(2)若成绩在为优秀,估计该校高三年级学生在这次月考中,成绩优秀的学生约为多少人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面凸四边形中(凸四边形指没有角度数大于的四边形),.

(1)若,求

(2)已知,记四边形的面积为.

① 求的最大值;

② 若对于常数,不等式恒成立,求实数的取值范围.(直接写结果,不需要过程)

查看答案和解析>>

同步练习册答案