精英家教网 > 高中数学 > 题目详情
4.在四边形ABCD(A,B,C,D按逆时针排列)中,$\overrightarrow{AB}$=(6,1),$\overrightarrow{CD}$=(-2,-3),若有$\overrightarrow{BC}∥\overrightarrow{DA}$,又有$\overrightarrow{AC}⊥\overrightarrow{BD}$,求$\overrightarrow{BC}$的坐标.

分析 根据题意,设$\overrightarrow{BC}$=(x,y),由此表示出$\overrightarrow{DA}$、$\overrightarrow{AC}$、$\overrightarrow{BD}$的坐标,结合题意可得x=-2y,①以及(6+x)(x-2)+(1+y)(y-3)=0,②,联立①、②,解可得答案.

解答 解:设$\overrightarrow{BC}$=(x,y),
则$\overrightarrow{DA}$=-$\overrightarrow{AD}$=-($\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$)=(-x-4,2-y),$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$=(6+x,1+y),$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$=(x-2,y-3);
若$\overrightarrow{BC}∥\overrightarrow{DA}$,则有x(2-y)=y(-x-4),即x=-2y,①,
若$\overrightarrow{AC}⊥\overrightarrow{BD}$,则有(6+x)(x-2)+(1+y)(y-3)=0,②,
联立①、②,解可得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-6}\\{y=3}\end{array}\right.$,
则$\overrightarrow{BC}$=(2,-2)或(-6,3).

点评 本题考查向量以及向量数量积的坐标运算,解题时要先将求出向量的坐标,进而利用向量平行、垂直的性质得到关于x、y的关系式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.由a2,2-a,4组成的集合A,若A含有3个元素,则实数a应满足的条件是a≠-2且a≠1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知A(2,0),B(0,3),记圆心在原点,半径为r的圆为圆C,对于线段AB上的任意一点D,若在圆C上都存在不同的两点E,F,使得点E是线段DF的中点,则r的取值范围是(2,$\frac{12}{13}\sqrt{13}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线ax-by-a+1=0被圆x2+y2+2y-24=0截得的弦的中点M的坐标为(-2,1),则a+b的值等于(  )
A.2B.1C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y满足不等式组$\left\{\begin{array}{l}{0≤x≤2}\\{x+y≥3}\\{x-y≥-1}\end{array}\right.$,其表示的区域的面积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC中,cosA=-$\frac{3}{5}$,sinB=$\frac{12}{13}$,求cos$\frac{A-B}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=$\sqrt{2}$,c=2,∠A=30°,则∠C=(  )
A.45°B.60°C.45°或135°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知单调递增的等比数列{bn}满足:b3+b5=40,b1b7=256,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b,c是有理数,且满足$\frac{|a|}{a}$+$\frac{|b|}{b}$+$\frac{|c|}{c}$=1,求代数式5-$\frac{abc}{|abc|}$的值.

查看答案和解析>>

同步练习册答案