精英家教网 > 高中数学 > 题目详情
13.若数列{an}满足:a1<a2>a3<a4>…>a2n-1<a2n>a2n+1…,则称数列{an}为“正弦数列”,现将1,2,3,4,5这五个数排成一个“正弦数列”,所有排列种数记为a,则二项式($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)6的展开式中含x2项的系数为-96.

分析 分别列出首位是2、3、4,5时的情况,即可得到a的值为16;求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式中的含x2项的系数.

解答 解:由题意,偶数项要比相邻的奇数项大,
当首位是1时,13254,14253,14352,15243,15342,共计5个;
首位是2时,23154,24153,24351,25143,25341,共计5个;
当首位是3时,34152,34251,35142,35241,共计4个;
当首位是4时,45231,45132,共计2个,
故共有5+5=4+2=16种,即a=16.
二项式($\sqrt{x}$-$\frac{a}{\sqrt{x}}$)6=($\sqrt{x}$-$\frac{16}{\sqrt{x}}$)6的展开式的通项公式为
Tr+1=${C}_{6}^{r}$•(-16)r•x3-r
令3-r=2,求得r=1,
故展开式中含x2项的系数为6×(-16)=-96.
故答案为:-96.

点评 本题考查了新定义以及二项式系数的性质、通项公式的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,bn=$\frac{1}{{S}_{n}}$,且a2•b2=$\frac{5}{8}$,S5=$\frac{35}{2}$.
(1)求数列{an},{bn}的通项公式;
(2)求证:b1+b2+…+bn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,a1=1,sn=n2an(n∈N*).
(1)求 S1,S2,S3,S4
(2)猜想{an}的前n项和 Sn的公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在报名的5名男生和3名女生中,选取5人参加数学竞赛,则男、女生都有的概率为$\frac{55}{56}$.(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.四面体PABC的四个顶点都在球O的球面上,PA=8,BC=4,PB=PC=AB=AC,且平面PBC⊥平面ABC,则球O的表面积为(  )
A.64πB.65πC.66πD.128π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{1{+log}_{2}(2-x)(x≤0)}\\{f(x-2)+1(x>0)}\end{array}\right.$,则f(-2)+f(2)=(  )
A.3B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与角$-\frac{π}{3}$终边相同的角是(  )
A.$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{11π}{6}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=x2-2x-4lnx,则f′(x)<0的解集(  )
A.(0,+∞)B.(0,2)C.(0,2)∪(-∞,-1)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列结论正确的是(  )
A.sinx<x,x∈(-π,π)B.x-x2>0,x∈(0,2)C.ex>1+x,x∈RD.lnx≤x-1,x∈(0,+∞)

查看答案和解析>>

同步练习册答案