精英家教网 > 高中数学 > 题目详情
14.关于x的不等式${log_2}({x^2}-1)>{log_2}(-2x)$的解集为(-∞,-1$-\sqrt{2}$).

分析 由对数函数的性质化对数不等式为一元二次不等式组求解.

解答 解:由${log_2}({x^2}-1)>{log_2}(-2x)$,得
$\left\{\begin{array}{l}{{x}^{2}-1>-2x}\\{-2x>0}\end{array}\right.$,解得x$<-1-\sqrt{2}$.
∴不等式${log_2}({x^2}-1)>{log_2}(-2x)$的解集为(-∞,-1$-\sqrt{2}$).
故答案为:(-∞,-1$-\sqrt{2}$).

点评 本题考查对数不等式的解法,考查了对数函数的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某市场经营一批进价为300元/件的商品,在市场试销中发现,此商品的日销售量y(件)与销售单价x(元)之间存在一次函数的关系,且销售单价为300元时,销售量是60件;销售单价为400元时,销售量是50件.
(1)求出y与x的函数关系式y=f(x);
(2)设经营此商品的日销售利润为w元,根据上述关系,写出w关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?最大日销售利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有1999个集合,每个集合有45个元素,任意两个集合的并集有89个元素,问此1999个集合的并集有多少个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向量$\overrightarrow{a}$=(sinθ,$\sqrt{3}$),$\overrightarrow{b}$=(1,cosθ),其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则|$\overrightarrow{a}$+$\overrightarrow{b}$|的范围是($\sqrt{3}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中真命题是(  )
A.若$\overrightarrow{a}$与$\overrightarrow{b}$互为负向量,则$\overrightarrow{a}$+$\overrightarrow{b}$=0B.若 $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若k为实数且k$\overrightarrow{a}$=$\overrightarrow{0}$,则k=0或$\overrightarrow{a}$=$\overrightarrow{0}$D.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.命题“若am2<bm2,则a<b”的逆命题为假命题.(填“真”、“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,将函数y=ex+1的图象沿着x轴的正方向平移1个单位长度,再作关于y轴的对称变换,得到函数f(x)的图象,则函数f(x)的解析式为f(x)=e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点为A(-2,0),过右焦点F且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线y=kx+m(k<0,m>0)与y轴交于点P,与x轴交于点Q,与椭圆C交于M,N两点,若$\frac{1}{|PM|}$+$\frac{1}{|PN|}$=$\frac{3}{|PQ|}$,求直线y=kx+m过定点,并求出这个定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.指出下列函数的最大值和最小值以及取得最值时x的值.
(1)y=2sin($\frac{1}{3}x+\frac{π}{3}$);
(2)y=$\frac{1}{2}$sin(2x-$\frac{π}{4}$)

查看答案和解析>>

同步练习册答案