精英家教网 > 高中数学 > 题目详情
(2012•商丘二模)选修4-1:几何证明选讲
如图,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB为直
径的圆,DC的延长线与AB的延长线交于点E.
(Ⅰ)求证:DC是⊙O的切线;
(Ⅱ)若EB=6,EC=6
2
,求BC的长.
分析:(Ⅰ)先得出点C在⊙O上,连接OC,可得∠OCA=∠OAC=∠DAC,从而OC∥AD,结合AD⊥DC得出DC⊥OC,从而DC是⊙O的切线
(Ⅱ)利用切割线定理求出EA=12,再证出△ECB∽△EAC,得出AC=
2
BC,在RT△ACB中求解.
解答:(Ⅰ)证明:∵⊙O是以AB为直径的圆,∠ACB=90°,∴点C在⊙O上,连接OC,可得∠OCA=∠OAC=∠DAC,∴OC∥AD,
又∵AD⊥DC,∴DC⊥OC,∵OC为半径,∴DC是⊙O的切线.
(Ⅱ)解:∵DC是⊙O的切线,∴EC2=EB•EA,又∵EB=6,EC=6
2
,∴EA=12.
∵∠ECB=∠EAC,∠CEB=∠AEC,∴△ECB∽△EAC,∴
BC
AC
=
EC
EA
=
2
2
,AC=
2
BC,
∵AC2+BC2=AB2=36,∴BC=2
3
点评:本题考查圆的切线的证明,与圆有关的线段求解.需掌握切割线定理、弦切角定理等知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•商丘二模)已知
x2
a2
+
y2
b2
=1
(a>b>0),M,N是椭圆的左、右顶点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1,k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)函数f(x)=x3-(
1
2
)
x-2
 
的零点所在区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)已知复数z=
1+2i
3-i
(i是虚数单位),则复数z的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥面CBB1
(Ⅰ)证明:DE∥面ABC;
(Ⅱ)若BB1=BC,求CA1与面BB1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘二模)已知函数f(x)=ex+2x2-3x.
(Ⅰ)求曲线y=f(x)在点(1,f (1))处的切线方程;
(Ⅱ)当x≥1时,若关于x的不等式f(x)≥
52
x2+(a-3)x+1恒成立,试求实数a的取值范围.

查看答案和解析>>

同步练习册答案