精英家教网 > 高中数学 > 题目详情

【题目】若函数满足对任意,都有成立,则实数的取值范围是______.

【答案】

【解析】

根据题中条件,可以先判断出函数f(x)在R上单调递增,再结合分段函数的解析式,要每一段都是增函数,且分界点时右段函数的函数值要大于等于左段函数的函数值,列出不等关系,求解即可得到a的取值范围.

:∵对任意x1≠x2,都有成立,
∴x1-x2与f(x1)-f(x2)同号,
根据函数单调性的定义,可知f(x)在R上是单调递增函数,
∴当时,f(x)=(为增函数,则 ,即a<3,①
且当x=2时,有最小值
时,f(x)=为二次函数,图象开口向下,对称轴为x=2,
若f(x)在(-∞,2)上为增函数,且
又由题意,函数在定义域R上单调递增,
,解得 ;②
综合①②可得a的取值范围:

即答案为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数a>0,b>0,函数f(x)=|x﹣a|﹣|x+b|的最大值为3.
(I) 求a+b的值;
(Ⅱ)设函数g(x)=﹣x2﹣ax﹣b,若对于x≥a均有g(x)<f(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆锥OO1的体积为π.设它的底面半径为x,侧面积为S

(1)试写出S关于x的函数关系式;

(2)当圆锥底面半径x为多少时,圆锥的侧面积最小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为的奇函数.

(1)确定的值;

(2)若,函数,求的最小值;

(3)若,是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构在某一学校随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为me , 众数为m0 , 平均值为 ,则(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知抛物线:,抛物线的准线与交于点

(1)过作曲线的切线,设切点为 ,证明:以为直径的圆经过点

(2)过点作互相垂直的两条直线 与曲线交于两点, 与曲线交于两点,线段 的中点分别为,试讨论直线是否过定点?若过,求出定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的图象C在x=﹣ 处的切线方程是y=
(1)若求a,b的值,并证明:当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线y= 上或在其下方;
(2)求证:当x∈(﹣∞,2]时,f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 中, 所对的边分别为,且.

(1)求角的大小;

(2)若 的中点,求的长.

查看答案和解析>>

同步练习册答案