精英家教网 > 高中数学 > 题目详情

【题目】对于函数,总存在实数,使成立,则称关于参数的不动点.

1)当时,求关于参数的不动点;

2)若对任意实数,函数恒有关于参数两个不动点,求的取值范围;

3)当时,函数上存在两个关于参数的不动点,试求参数的取值范围.

【答案】14;(2;(3

【解析】

1)当时,结合已知可得,解方程可求;

2)由题意可得,恒有2个不同的实数根,结合二次方程的根的存在条件可求;

3)当时,转化为问题上有两个不同实数解,进行分离,结合对勾函数的性质可求.

解:(1)当时,

由题意可得,

解可得

关于参数1的不动点为4

2)由题意可得,恒有2个不同的实数根

恒有2个不同的实数根

所以△恒成立,

恒成立,

,则

的取值范围是

3时,上有两个不同实数解,

上有两个不同实数解,

结合对勾函数的性质可知,

解可得,

的范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1CAB=3BC=5.

)求证:AA1平面ABC

)求二面角A1-BC1-B1的余弦值;

)证明:在线段BC1存在点D,使得ADA1B,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求圆的普通方程和直线的直角坐标方程;

(2)若直线与圆交于两点,是圆上不同于两点的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某学校高二年级学生的物理成绩,从中抽取名学生的物理成绩百分制作为样本,按成绩分成5组:,频率分布直方图如图所示,成绩落在中的人数为20

男生

女生

合计

优秀

不优秀

合计

1的值;

2根据样本估计总体的思想,估计该校高二学生物理成绩的平均数和中位数

3成绩在80分以上含80分为优秀,样本中成绩落在中的男、女生人数比为1:2,成绩落在中的男、女生人数比为3:2,完成列联表,并判断是否所有95%的把握认为物理成绩优秀与性别有关

参考公式和数据:

050

005

0025

0005

0455

3841

5024

7879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为双曲线上的两点,为线段的中点,线段的垂直平分线与双曲线交于两点

(1)确定的取值范围

(2)试判断四点是否共圆?并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数,其中

)若的极值点,求的值;

)求的单调区间;

)若上的最大值是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)若,求函数的单调区间;

2)若关于的不等式对任意的实数恒成立,求实数的取值范围;

3)若函数个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,当时,.数列满足.

1)求数列的通项公式;

2)求数列的通项公式;

3)若数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为此函数的定义域)同时满足下列两个条件:函数内单调递增或单调递减;如果存在区间,使函数在区间上的值域为,那么称为闭函数;

请解答以下问题:

(1) 求闭函数符合条件的区间

(2) 判断函数是否为闭函数?并说明理由;

(3)是闭函数,求实数的取值范围;

查看答案和解析>>

同步练习册答案