精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2+cx(a、b、c为常数),f(x)在x=-1处有极值,曲线y=f(x)在点(3,-24)处的切线方程为8x+y=0,求a、b、c.

解:由已知,f'(x)=3ax2+2bx+c.(1分)
∵f(x)在x=-1处有极值,∴f'(-1)=0,即3a-2b+c=0.①
又∵f(3)=-24,f'(3)=-8,
∴27a+9b+3c=-24,27a+6b+c=-8.③(4分)
由①,②,③解得,b=-2,c=-5.(6分)
分析:利用在x=-1处有极值,则f'(-1)=0,而f(3)=-24,f'(3)=-8建立关于实数a、b、c的方程组,解之即可求出所求.
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导函数的正负判断函数的单调性并根据函数的增减性得到函数的极值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案