精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在坐标原点,离心率等于,该椭圆的一个长轴端点恰好是抛物线的焦点.

1)求椭圆的方程;

2)已知直线与椭圆的两个交点记为,其中点在第一象限,点是椭圆上位于直线两侧的动点.运动时,满足,试问直线的斜率是否为定值?若是,求出该定值;若不是,请说明理由.

【答案】(1)

(2)为定值,定值.

【解析】

1)由题意可求出抛物线的焦点坐标,即为的值,再根据离心率等于,及的关系即可求出

2)由题意,即直线与直线斜率存在且斜率之和为0,可设的斜率为,表示出直线与直线的方程,分别联立直线方程与椭圆方程,即可用含的式子表示两点的坐标特征,即可求出直线的斜率。

1)因为抛物线焦点为,所以

,∴

,所以.

所以椭圆的方程为.

2)由题意,当时,知斜率存在且斜率之和为0.

设直线的斜率为,则直线的斜率为,记

直线与椭圆的两个交点

的方程为,联立

由已知知恒成立,所以

同理可得.

所以

所以.

所以的斜率为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科。某省采用模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(63),每科目满分100.为了应对新高考,某学校从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.

1)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如下表是根据调查结果得到的列联表.请求出,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择“物理”

选择“历史”

总计

男生

10

女生

25

总计

2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“历史”的人数为,求的分布列及数学期望.

参考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,分别为内角所对的边,且满足.

(Ⅰ)的大小;

(Ⅱ)现给出三个条件:.

试从中选出两个可以确定的条件,写出你的选择并以此为依据求的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线L,曲线C的参数方程为为参数)

求直线L和曲线C的普通方程;

在曲线C上求一点Q,使得Q到直线L的距离最小,并求出这个最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A.命题“若,则”的逆否命题为:“若,则

B.”是“”的充分而不必要条件

C.为假命题,则均为假命题

D.命题“存在,使得”,则非“任意,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过为坐标原点,线段的中点在圆上.

(1)求的方程;

(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为点,左、右顶点分别为,长轴长为,椭圆上任意一点(不与重合)与连线的斜率乘积均为.

(1)求椭圆的标准方程;

(2)如图,过点的直线与椭圆交于两点,过点的直线与椭圆交于两点,且,试问:四边形可否为菱形?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线上.

(1)求圆的方程;

(2)设圆轴相交于两点,点为圆上不同于的任意一点,直线轴于点.当点变化时,以为直径的圆是否经过圆内一定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与定点,动圆点且与圆相切

(1)求动圆圆心的轨迹的方程;

(2)若过定点的直线交轨迹于不同的两点,求弦长的最大值

查看答案和解析>>

同步练习册答案