精英家教网 > 高中数学 > 题目详情

【题目】下列说法中正确的个数是(

①球的半径是球面上任意一点与对球心的连线;

②球面上任意两点的连线是球的直径;

③用一个平面截一个球,得到的截面是一个圆;

④用一个平面截一个球,得到的截面是一个圆面;

⑤以半圆的直径所在直线为轴旋转形成的曲面叫做球;

⑥空间中到定点的距离等于定长的所有的点构成的曲面是球面.

A.0B.1C.2D.3

【答案】D

【解析】

依次判断每个选项:两点的连线经过球心时才满足,②错误;截面是圆面,③错误;几何体叫做球,故⑤错误;得到答案.

①正确;

当球面上两点的连线经过球心时,这两点的连线才是球的直径,故②错误;

③用一个平面截一个球,得到的截面是圆面,而不是一个圆,故③错误;

④正确;

曲面所围成的几何体叫做球,故⑤错误;

⑥正确;

故正确说法为①④⑥,共3.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧的长度之和为米,圆心角为弧度.

(1)关于的函数解析式;

(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮.某大学社团调查了该校文学院300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内),并按时间(单位:分钟)将学生分成六个组:,经统计得到了如图所

示的频率分布直方图

(Ⅰ)求频率分布直方图中的值,并估计该校文学院的学生每天诵读诗词的时间的平均数;

(Ⅱ)若两个同学诵读诗词的时间满足,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知倾斜角为α的直线l过点A21).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系曲线C的极坐标方程为ρ2sinθ,直线l与曲线C分别交于PQ两点.

1)写出直线l的参数方程和曲线C的直角坐标方程.

2)求|APAQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列4个命题:

1)“若,则互为相反数”的否命题

2)“若,则”的逆否命题

3)“若,则”的否命题

4)“若,则有实数根”的逆命题

其中真命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)有下列几个命题,其中正确的命题是(

A.函数上是增函数

B.函数上是减函数

C.函数的单调区间是

D.已知上是增函数,若,则有

E.已知函数是奇函数,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到点A的距离与点P的高度之和为( )

A. 5米B. (4+)米

C. (4+)米D. (4+)米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产的一种电器的固定成本(即固定投资)为0.5万元,每生产一台这种电器还需可变成本(即另增加投资)25元,市场对这种电器的年需求量为5百台.已知这种电器的销售收入R与销售量t的关系可用抛物线表示,如图.

(注:销售量的单位:百台,销售收入与纯收益的单位:万元,生产成本=固定成本+可变成本,精确到1台和0.01万元)

1)写出销售收入R与销售量t之间的函数关系式;

2)若销售收入减去生产成本为纯收益,写出纯收益与销售量的函数关系式,并求销售量是多少时,纯收益最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数图象在点处的切线方程;

(2)当时,讨论函数的单调性

(3)是否存在实数,对任意的 恒成立?若存在,求出的取值范围:若不存在,说明理由

查看答案和解析>>

同步练习册答案