精英家教网 > 高中数学 > 题目详情
(2013•牡丹江一模)《选修4-5:不等式选讲》
设不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=a
x-3
+b
5-x
的最大值,以及取得最大值时x的值.
分析:(Ⅰ)依题意,通过解绝对值不等式|x-2|>1可求其解集,从而可知x2-ax+b=0的解,由韦达定理可求得a,b的值;
(Ⅱ)通过导数法可求得f(x)=4
x-3
+3
5-x
的最大值,以及取得最大值时x的值.
解答:解:(Ⅰ)∵|x-2|>1,
∴x>3或x<1.
∴不等式|x-2|>1的解集为{x|x>3或x<1};
∵不等式|x-2|>1的解集与关于x的不等式x2-ax+b>0的解集相同,
∴1和3是方程x2-ax+b=0的根,
∴a=1+3=4,b=1×3=3.
(Ⅱ)∵f(x)=4
x-3
+3
5-x
(3≤x≤5),
∴f′(x)=
1
2
x-3
-
3
2
5-x
=
2
5-x
-
3
2
x-3
x-3
5-x

由f′(x)=0得x=
107
25

由f′(x)>0得,3≤x<
107
25

由f′(x)<0得,
107
25
<x≤5.
∴f(x)在[3,
107
25
)上单调递增,在(
107
25
,5]上单调递减,
∴当x=
107
25
时,f(x)取得最大值,
即f(x)max=f(
107
25
)=4
107
25
-3
+3
5-
107
25
=5
2
点评:本题考查绝对值不等式的解法,利用导数法求函数的最值是难点,也是关键,考查分析、运算的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•牡丹江一模)在球O内任取一点P,使得P点在球O的内接正方体中的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)复数 (1+i)z=i( i为虚数单位),则
.
z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中面积最大的是(  )

查看答案和解析>>

同步练习册答案