精英家教网 > 高中数学 > 题目详情

(本小题满分1 4分)已知m,t∈R,函数f (x) =(x - t)3+m.

(I)当t =1时,

(i)若f (1) =1,求函数f (x)的单调区间;

(ii)若关于x的不等式f (x)≥x3—1在区间[1,2]上有解,求m的取值范围;

(Ⅱ)已知曲线y= f (x)在其图象上的两点A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)处的切线

分别为l1、l2.若直线l1与l2平行,试探究点A与点B的关系,并证明你的结论.

 

【答案】

解:(Ⅰ)(i)因为,所以,·················· 1分

, 而恒成立,

所以函数的单调递增区间为.·············· 4分

(ii)不等式在区间上有解,

即  不等式在区间上有解,

即  不等式在区间上有解,

等价于在区间上的最小值,············· 6分

因为时,

所以的取值范围是.···················· 9分

(Ⅱ)因为的对称中心为

可以由经平移得到,

所以的对称中心为,故合情猜测,若直线平行,则点与点关于点对称. 10分

对猜想证明如下:

因为

所以

所以,的斜率分别为

又直线平行,所以,即

因为

所以,,························ 12分

从而

所以

又由上

所以点关于点(对称.

故直线平行时,点与点关于点对称.·········· 14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(新课标1卷解析版) 题型:解答题

(本小题满分共12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6   1.2   2.7   1.5    2.8   1.8   2.2   2.3    3.2   3.5

2.5   2.6   1.2   2.7    1.5   2.9   3.0   3.1    2.3   2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2    1.7     1.9     0.8     0.9    2.4     1.2     2.6     1.3     1.4

1.6    0.5     1.8     0.6     2.1    1.1     2.5     1.2     2.7     0.5

(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?

(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省潍坊市高三3月第一次模拟考试文科数学试卷(解析版) 题型:解答题

(本小题满分1 2分)

如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.

( I )当E为BC中点时,求证:CP//平面ABEF

(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省福州市高三质量检测理科数学 题型:解答题

(本小题满分1 3分)

如图①,一条宽为l km的两平行河岸有村庄A和供电站C,村庄B与A、C的直线距离都是2km,BC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄A、B供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km.

    (Ⅰ)已知村庄A与B原来铺设有旧电缆仰,需要改造,旧电缆的改造费用是0.5万元/km.现

决定利用旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.

(Ⅱ)如图②,点E在线段AD上,且铺设电缆的线路为CE、EA、EB.若∠DCE=θ (0≤θ≤),试用θ表示出总施工费用y(万元)的解析式,并求y的最小值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省福州市高三第一学期期末质量检测理科数学 题型:解答题

(本小题满分1 3分)如图,在△ABC中,已知B=,AC=4,D为BC边上一点.

(I)若AD=2,S△ABC=2,求DC的长;

(Ⅱ)若AB=AD,试求△ADC的周长的最大值.

  

 

 

 

查看答案和解析>>

同步练习册答案