(本小题满分1 4分)已知m,t∈R,函数f (x) =(x - t)3+m.
(I)当t =1时,
(i)若f (1) =1,求函数f (x)的单调区间;
(ii)若关于x的不等式f (x)≥x3—1在区间[1,2]上有解,求m的取值范围;
(Ⅱ)已知曲线y= f (x)在其图象上的两点A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)处的切线
分别为l1、l2.若直线l1与l2平行,试探究点A与点B的关系,并证明你的结论.
解:(Ⅰ)(i)因为,所以,·················· 1分
则, 而恒成立,
所以函数的单调递增区间为.·············· 4分
(ii)不等式在区间上有解,
即 不等式在区间上有解,
即 不等式在区间上有解,
等价于在区间上的最小值,············· 6分
因为时,,
所以的取值范围是.···················· 9分
(Ⅱ)因为的对称中心为,
而可以由经平移得到,
所以的对称中心为,故合情猜测,若直线与平行,则点与点关于点对称. 10分
对猜想证明如下:
因为
所以
所以,,的斜率分别为,.
又直线与平行,所以,即,
因为,
所以,,························ 12分
从而,
所以.
又由上
所以点关于点(对称.
故直线与平行时,点与点关于点对称.·········· 14分
【解析】略
科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(新课标1卷解析版) 题型:解答题
(本小题满分共12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?
(2)完成茎叶图,从茎叶图来看,哪种药疗效更好?
查看答案和解析>>
科目:高中数学 来源:2012-2013学年山东省潍坊市高三3月第一次模拟考试文科数学试卷(解析版) 题型:解答题
(本小题满分1 2分)
如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.
( I )当E为BC中点时,求证:CP//平面ABEF
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省福州市高三质量检测理科数学 题型:解答题
(本小题满分1 3分)
如图①,一条宽为l km的两平行河岸有村庄A和供电站C,村庄B与A、C的直线距离都是2km,BC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄A、B供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km.
(Ⅰ)已知村庄A与B原来铺设有旧电缆仰,需要改造,旧电缆的改造费用是0.5万元/km.现
决定利用旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.
(Ⅱ)如图②,点E在线段AD上,且铺设电缆的线路为CE、EA、EB.若∠DCE=θ (0≤θ≤),试用θ表示出总施工费用y(万元)的解析式,并求y的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省福州市高三第一学期期末质量检测理科数学 题型:解答题
(本小题满分1 3分)如图,在△ABC中,已知B=,AC=4,D为BC边上一点.
(I)若AD=2,S△ABC=2,求DC的长;
(Ⅱ)若AB=AD,试求△ADC的周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com