精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的前n项和Sn=2n+2-4.
(1)求数列{an}的通项公式;
(2)设bn=an•log2an,求数列{bn}的前n项和Tn

分析 (1)Sn=2n+2-4①,Sn-1=2n+1-4,②运用递推关系是求解即可.
(2)求解得出bn=an•log2an=(n+1)•2n+1,利用错位相减法求解数列的和.

解答 解:∵数列{an}的前n项和Sn=2n+2-4.
∴a1=23-=4,
∵Sn=2n+2-4.①
Sn-1=2n+1-4,②
①-②.an=2n+1,n≥2.
n=1符合式子,
∴an=2n+1
(2)∵log22n+1=n+1,
∴bn=an•log2an=(n+1)•2n+1
∴数列{bn}的前n项和Tn=2×22+3×23+4×242t…+n•2n+(n+1)×2n+1,③
2Tn=2×23+3×24+4×25+…+n×2n+1+(n+1)×2n+2,④
③-④得出:-Tn=8+(23+24+25+…+2n+1)-(n+1)×2n+2=2n+2-(n+1)×2n+2=-n×2n+2
∴Tn=n×2n+2

点评 本题考察了数列的和与通项的关系,利用错位相减法求解数列的和,考察了学生的化简运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,O为坐标原点,A、B、C三点满足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(1)求证:A、B、C三点共线;
(2)已知A(1,cosx)、B(2cos2$\frac{x}{2}$,cosx),x∈[0,$\frac{π}{2}$],若f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)|$\overrightarrow{AB}$|的最小值为-1,求实数m值.
(3)若点A(2,0),在y轴正半轴上是否存在点B满足${\overrightarrow{OC}}^{2}$=$\overrightarrow{AC}$•$\overrightarrow{CB}$,若存在求出点B;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示的流程图是将一系列指令和问题用框图的形式排列而成的.阅读下面的流程图,并回答下列问题.若b>c>a,则输出的数是b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平行四边形ABCD中,AD=1,∠BAD=60°,E为CD中点.若$\overrightarrow{AC}$•$\overrightarrow{BE}$=1,则|AB|=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{2a+1}{a}-\frac{1}{{{a^2}x}}$,常数a>0,当0<m<n,f(x)的定义域和值域都是[m,n],则实数a的取值范围{a|a>$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),不等式$\frac{a}{{{a^2}+1}}+\frac{c}{{{c^2}+1}}≤λ$恒成立,则λ的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若cosα=-$\frac{1}{3}$,则$sin({\frac{3π}{2}-α})$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a=sin14°+cos14°,b=2$\sqrt{2}$sin30.5°cos30.5°,c=$\frac{\sqrt{6}}{2}$,则a,b,c的大小关系(  )
A.a<b<cB.b<a<cC.c<b<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)(x∈R)满足f(1)=1,f′(x)<$\frac{1}{2}$,则不等式f(x2)<$\frac{x^2}{2}+\frac{1}{2}$的解集为(-∞,-1)∪(1,+∞).

查看答案和解析>>

同步练习册答案