分析 利用椭圆、双曲线的定义,求出|PF1|,|PF2|,结合∠F1PF2=90°,利用勾股定理,建立方程,即可求出椭圆的离心率e.
解答 解:设椭圆的长半轴长为a1,双曲线的实半轴长为a2,焦距为2c,
|PF1|=m,|PF2|=n,且不妨设m>n,椭圆的离心率为e,
由m+n=2a1,m-n=2a2得m=a1+a2,n=a1-a2.
又∠F1PF2=90°,由勾股定理可得4c2=m2+n2=2a12+2a22,
∴$\frac{1}{{e}^{2}}$+$\frac{1}{2}$=2,
解得e=$\frac{{\sqrt{6}}}{3}$.
故答案为:$\frac{{\sqrt{6}}}{3}$.
点评 本题考查椭圆、双曲线的定义与性质,考查离心率公式和勾股定理的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,0) | B. | (-2,0) | C. | (0,2) | D. | (0,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com