精英家教网 > 高中数学 > 题目详情
20.已知F1和F2是两个定点,椭圆C1与等轴双曲线C2(实轴长等于虚轴长)都以F1、F2为焦点,点P是C1与C2的一个交点,且∠F1PF2=90°,则椭圆C1的离心率是$\frac{{\sqrt{6}}}{3}$.

分析 利用椭圆、双曲线的定义,求出|PF1|,|PF2|,结合∠F1PF2=90°,利用勾股定理,建立方程,即可求出椭圆的离心率e.

解答 解:设椭圆的长半轴长为a1,双曲线的实半轴长为a2,焦距为2c,
|PF1|=m,|PF2|=n,且不妨设m>n,椭圆的离心率为e,
由m+n=2a1,m-n=2a2得m=a1+a2,n=a1-a2
又∠F1PF2=90°,由勾股定理可得4c2=m2+n2=2a12+2a22
∴$\frac{1}{{e}^{2}}$+$\frac{1}{2}$=2,
解得e=$\frac{{\sqrt{6}}}{3}$.
故答案为:$\frac{{\sqrt{6}}}{3}$.

点评 本题考查椭圆、双曲线的定义与性质,考查离心率公式和勾股定理的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)={x^2}-({a+\frac{1}{a}})x+1$,实数a>0.
(1)比较a与$\frac{1}{a}$的大小;
(2)解关于x的不等式:f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.命题p:关于x的一元二次方程x2+2tx+(2-t)=0有两个不相等的实数根,命题q:复平面中复数z=(t-2)+(t2-2t-3)i对应的点在x轴的下方 若p∧q为假,q为真,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若f(x)=x2-2x-3,x∈[-2,5].
(1)求f(x)的单调区间;
(2)求f(x)的最大值与最小值;
(3)若m+f(x)≤0恒成立,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若正方形ABCD的一条边在直线y=2x-17上,另外两个顶点在抛物线y=x2上.则该正方形面积的最小值为80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线的参数方程为$\left\{\begin{array}{l}x=8{t^2}\\ y=8t\end{array}\right.$(t为参数),则该抛物线的焦点坐标为(  )
A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x1,x2∈R,则|x1-x2|的几何意义是实数x1,x2在数轴上对应的两点之间的距离,将此结论类比到复数有“设z1,z2∈C,则|z1-z2|的几何意义是在复平面内对应的两点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设x,y满足条件$\left\{\begin{array}{l}{3x+y≤13}\\{2x+3y≤18}\\{x≥0,y≥0}\end{array}\right.$,求z=5x+3y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若sinθ+cosθ=2(sinθ-cosθ),则$sin({θ-π})sin({\frac{π}{2}-θ})$=-$\frac{3}{10}$.

查看答案和解析>>

同步练习册答案