精英家教网 > 高中数学 > 题目详情
已知数列{an}是各项均不为0的等差数列,其前n项和为Sn,且an2=S2n-1,数列{bn}满足b1=-
1
2
,2bn+1=bn-1.
(Ⅰ)求an,并证明数列{bn+1}是等比数列;
(Ⅱ)若cn=an(bn+1),求数列{cn}的前n项和Tn
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)利用an2=S2n-1,求出数列的前两项,通过等差数列求出通项公式,利用等比数列的定义证明{bn+1}是等比数列.
(Ⅱ)利用等比数列求出通项公式,化简cn=an(bn+1),利用错位相减法求解数列的和即可.
解答: 解:(Ⅰ)由an2=S2n-1
令n=1得a12=S1=a1解a1=1
令n=2得a22=S3=3a2,得a2=3
∵{an}为等差数列,∴an=2n-1  
证明:∵bn+1≠0,
bn+1+1
bn+1
=
1
2
bn-
1
2
+1
bn+1
=
1
2
(bn+1)
bn+1
=
1
2

又b1+1=
1
2
,故{bn+1}是以
1
2
为首项公比为
1
2
的等比数列.
(Ⅱ)由(1)知,∵bn+1=(
1
2
)n

cn=(2n-1)(
1
2
)n
Tn=(
1
2
)1+3×(
1
2
)2+5×(
1
2
)3+…+(2n-1)(
1
2
)n

1
2
Tn
=(
1
2
)2+3×(
1
2
)3+…+(2n-3)(
1
2
)n+(2n-1)(
1
2
)n+1

1
2
Tn=(
1
2
)1+2[(
1
2
)2+(
1
2
)
3
+(
1
2
)
4
+…+(
1
2
)
n
]-(2n-1)(
1
2
)n+1

=
3
2
-(
1
2
)n-1-
(2n-1)
2
(
1
2
)n

Tn=3-(2n+3)(
1
2
)n
点评:本题考查数列求和,错位相减法的应用,等比数列的判断,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零实数,若f(2004)=1,则f(2005)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“已知a、b∈N*,如果ab可被 5 整除,那么a、b 中至少有一个能被 5 整除”时,假设的内容应为(  )
A、a、b都能被5整除
B、a、b都不能被5整除
C、a、b不都能被5整除
D、a不能被5整除

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,且a1=3,{bn}为等比数列,数列{an+bn}的前三项依次为5,9,15,求:
(1)数列{an},{bn}的通项公式;
(2)数列{an+bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为(  )
A、560m3
B、540m3
C、520m3
D、500m3

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程组:
x2+y2-8x-10y+16=0
x2+y2-2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数y=
x+a
x+b
的导函数,及其单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,Sn为前n项和.
(1)若a1+a9+a12+a20=20,求S20
(2)若S1=1,S8=4,求a17+a18+a19+a20的值;
(3)若已知首项a1=13,且S3=S11,问此数列前多少项的和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于点C,D,若⊙O的半径为r,△PCD的周长为3r,则
求:tan∠APB.

查看答案和解析>>

同步练习册答案