精英家教网 > 高中数学 > 题目详情

【题目】某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为件时,销售所得的收入为万元.

(1)该公司这种产品的年生产量为件,生产并销售这种产品所得到的利润关于当年产量的函数为,求

(2)当该公司的年产量为多少件时,当年所获得利润最大?

【答案】(1);(2)当该公司的年产量为475件时,当年获得的利润最大.

【解析】试题分析:(1)根据销售这种产品所得的年利润=销售所得的收入-销售成本,建立函数关系即可;
(2)利用配方法,求得0<x≤500时, x=450时取得最大值,x>500时, 即当该公司的年产量为475件时,获得的利润最大.

试题解析:

(1)当时,

时,

(2)当时,

故当时,

时, .

故当该公司的年产量为475件时,当年获得的利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的以往各年的宣传费用支出(万元)与销售量(万件)之间有如下对应数据

2

4

5

6

8

4

3

6

7

8

(1)试求回归直线方程;

(2)设该产品的单件售价与单件生产成本的差为(元),若与销售量(万件)的函数关系是,试估计宣传费用支出为多少万元时,销售该产品的利润最大?(注:销售利润=销售额-生产成本-宣传费用)

(参考数据与公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)平面直角坐标系中,倾斜角为的直线过点,以原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出直线的参数方程(为常数)和曲线的直角坐标方程;

(2)若直线交于两点,且,求倾斜角的值.

(Ⅱ)已知函数.

(1)若函数的最小值为5,求实数的值;

(2)求使得不等式成立的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某条生产线上随机抽取100件产品,测量这些产品的某项技术指标值x,得到如下的频率分布表:

x

[11,13)

[13,15)

[15,17)

[17,19)

[19,21)

[21,23)

频数

2

12

34

38

10

4

(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;

(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x∈R|ax2+2x+1=0,a∈R}中只有一个元素,求a的值并求出这个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={﹣2,3a﹣1,a2﹣3},B={a﹣2,a﹣1,a+1},若A∩B={﹣2},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是

(Ⅰ) 求曲线交点的平面直角坐标;

(Ⅱ) 点分别在曲线 上,当最大时,求的面积(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)= ,其中x是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润x表示为月产量x的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意实数x,[x]表示不超过x的最大整数,如[1.1]=1,[﹣2.1]=﹣3.定义在R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},则A中所有元素之和为

查看答案和解析>>

同步练习册答案