精英家教网 > 高中数学 > 题目详情

【题目】已知项数为的数列满足条件:①;②;若数列满足,则称为数列关联数列.

1)数列1591317是否存在关联数列?若存在,写出其关联数列,若不存在,请说明理由;

2)若数列存在关联数列,证明:

3)已知数列存在关联数列,且,求数列项数m的最小值与最大值.

【答案】1)存在关联数列:10987,理由见详解;(2)证明见详解;(3m的最小值与最大值分别为.

【解析】

1)根据关联数列定义求解判断.

2)根据关联数列定义结合数列的单调性讨论即可.

3)根据数列和求关联数列的项的特征结合单调性分析出,根据 求解.

1)因为

所以数列1591317存在关联数列10987.

2)因为数列存在关联数列

所以

所以

所以为递减数列,

又因为,所以

所以

所以

3)因为数列存在关联数列

所以任意

因为

所以

由(2)知

所以

解得,因为

所以

所以m的最小值与最大值分别为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,其中是实常数.

1)若,求的取值范围;

2)若,求证:函数的零点有且仅有一个;

3)若,设函数的反函数为,若是公差的等差数列且均在函数的值域中,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面ABCD.

1)求证:平面PAD

2)若EPC的中点,求直线BE与平面PAD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,直线与圆相切.

1)求椭圆的方程;

2)过点的直线与椭圆交于不同两点,线段的中垂线为,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,平面,底面是矩形,为棱的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程,点在直线上,直线与曲线交于两点.

1)求曲线的普通方程及直线的参数方程;

2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是国家统计局于202019日发布的201812月到201912月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:20192月与20182月相比较称同比,20192月与20191月相比较称环比)根据该折线图,下列结论错误的是(

A.201912月份,全国居民消费价格环比持平

B.201812月至201912月全国居民消费价格环比均上涨

C.201812月至201912月全国居民消费价格同比均上涨

D.201811月的全国居民消费价格高于201712月的全国居民消费价格

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校开设了射击选修课,规定向两个靶进行射击:先向靶射击一次,命中得1分,没有命中得0分,向靶连续射击两次,每命中一次得2分,没命中得0分;小明同学经训练可知:向靶射击,命中的概率为,向靶射击,命中的概率为,假设小明同学每次射击的结果相互独立.现对小明同学进行以上三次射击的考核.

1)求小明同学恰好命中一次的概率;

2)求小明同学获得总分的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为5的菱形ABCD沿对角线AC折起,顶点B移动至处,在以点B'AC,为顶点的四面体AB'CD中,棱ACB'D的中点分别为EF,若AC6,且四面体AB'CD的外接球球心落在四面体内部,则线段EF长度的取值范围为(

A.B.C.D.

查看答案和解析>>

同步练习册答案