精英家教网 > 高中数学 > 题目详情
2.下列命题中正确的个数是(  )
?①y=sinx的递增区间是[2k$π,2kπ+\frac{π}{2}$]
?②y=sinx是递增函数.
?③y=sinx在$[{-\frac{π}{2},\frac{π}{2}}]$上是增函数.
A.1个B.2个C.3个D.0个

分析 由条件利用正弦函数的单调性,可得结论.

解答 解:对于函数y=sinx,它的增区间为[2k-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z,
故①②不正确,且③正确.
故选:A.

点评 本题主要考查正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N+),则a2015=(  )
A.0B.$\sqrt{3}$C.-$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知(1+2$\sqrt{x}$)n的展开式中,某一项的系数是它前一项系数的2倍,而又等于它后一项系数的$\frac{5}{6}$.
(1)求展开后所有项的系数之和及所有项的二项式系数之和;
(2)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一物体沿直线以v(t)=8t-2t2(t的单位为:秒,v的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上单调递增,求ω的取值范围;
(2)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有30个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在对一组数据采用几种不同的回归模型进行回归分析时,得到下面的相应模型的相关指数R2的值,其中拟和效果较好的是(  )
A.0.60B.0.63C.0.65D.0.68

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知$α,β∈(\frac{3π}{4},π),sin(α+β)=-\frac{3}{5},sin(β-\frac{π}{4})=\frac{12}{13}$,求$cos(α+\frac{π}{4})$的值.
(2)求$sin{50}^{?}(1+\sqrt{3}tan{10}^{?})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=sin(2x+φ)(0<φ<π)在x=$\frac{π}{2}$处取得最值,若数列{xn}是首项与公差均为$\frac{π}{4}$的等差数列,则f(x1)+f(x2)+f(x3)+…+f(x2015)的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知不等式组$\left\{\begin{array}{l}{x+y≥4}\\{x-y≥-2}\\{x≤2}\end{array}\right.$,表示的平面区域为D,点O(0,0),A(1,0).若点M是D上的动点,则$\frac{\overrightarrow{OA}•\overrightarrow{OM}}{|\overrightarrow{OM|}}$的最小值是(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

同步练习册答案