精英家教网 > 高中数学 > 题目详情
如图所示,在正方体ABCDA1B1C1D1中,MN分别是棱ABCC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,
有以下四个命题:
A.平面MB1PND1
B.平面MB1P⊥平面ND1A1
C.△MB1P在底面ABCD上的射影图形的面积为定值;
D.△MB1P在侧面D1C1CD上的射影图形是三角形.
其中正确命题的序号是__________.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中AC=3,AB=5,
(Ⅰ)求证:          
(Ⅱ)求证:AC1//平面CDB1
(Ⅲ)求三棱锥A1—B1CD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)

如图,圆柱OO1内有一个三棱柱ABC-A1B1C1
三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。
(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1
(Ⅱ)设AB=AA1。在圆柱OO1内随机选取一点,记该点取自于
三棱柱ABC-A1B1C1内的概率为P。
(i)                            当点C在圆周上运动时,求P的最大值;
记平面A1ACC1与平面B1OC所成的角为(0°<  90°)。当P取最大值时,求cos的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直三棱柱ABCA1B1C1EF分别是棱CC1AB中点。
(1)求证:
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥面ABCD。
(1)证明:PF⊥FD;
(2)在PA上是否存在点G,使得EG//平面PFD。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两条不同的直线,是两个不重合的平面,
给定下列四个命题,其中为真命题的序号是              
;②
;④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC—A1B1C1中,,直线B1C与平面ABC成30°角。


 
  (1)求证:平面B1AC⊥平面ABB1A1

  (2)求二面角B——A的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四棱锥S-ABCD中,侧面与底面所成的角为,则它的外接球半径R与内切球半径之比为( )
A.5  B.  C.10  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

ABCDCDEF是两个全等的正方形,且两个正方形所在平面互相垂直,MBC的中点,则异面直线AMDF所成角的正切值为        

查看答案和解析>>

同步练习册答案