精英家教网 > 高中数学 > 题目详情

【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.

1)求分数在[7080)内的频率,并补全这个频率分布直方图;

2)从频率分布直方图中,估计本次考试的平均分;

3)若从60名学生中随机抽取2人,抽到的学生成绩在[4070)记0分,在[70100]1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.

【答案】1,频率分布直方图见解析2;(3分布列见解析

【解析】

试题分析:1)由题意及频率分布直方图,设分数在内的频率为,建立方程解出即可;(2)由图及平均数的定义即可估计本次考试的平均分;(3)由题意若从名学生中随机抽取人,抽到的学生成绩在分,在分,用表示抽取结束后的总记分,得到的分布列,再由期望的定义即可求得.

试题解析:(1)设分数在内的频率为,根据频率分布直方图,则有,可得,所以频率分布直方图如图所示.

2)平均分:

3)学生成绩在的有人,在的有人,并且的可能取值是.所以

所以的分布列为

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

1)求椭圆的方程;

2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海州市英才中学某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分別到气象局与某医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

昼夜温差

就诊人数

该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

1求选取的组数据恰好是相邻两个月的概率;

2若选取的是月与6月的两组数据,请根据月份的数据,求出关于的线性回归方程

3若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想.

其中回归系数公式,,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是t为参数).

1求曲线C的直角坐标方程和直线L的普通方程;

2设点Pm,0,若直线L与曲线C交于两点A,B,且,求实数m的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中各项都大于1,前项和为,且满足.

1求数列的通项公式;

2,求数列的前项和

3求使得对所有都成立的最小正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1时,求函数的零点;

2的单调区间;

3时,若恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

将圆上每一点的纵坐标保持不变,横坐标变为原来的2倍得到曲线

1)写出曲线的参数方程;

2)以坐标原点为极点, 轴正半轴为极轴坐标建立极坐标系,已知直线的极坐标方程为,若分别为曲线和直线上的一点,求的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,侧面底面中点,.

(I)在线段上是否存在点,使得//平面,指出点的位置并证明;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络营销部门为了统计某市网友“双11”在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如图):

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为3:2.

(1)试确定的值,并补全频率分布直方图;

(2)试营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定5人,若需从这5人中随机选取2人进行问卷调查,则恰好选取1名“网购达人”和1名“非网购达人”的概率是多少?

查看答案和解析>>

同步练习册答案