精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是奇函数,当x≥0时,f(x)=3x-1,设f(x)的反函数是y=g(x),则g(-8)=
 
分析:本题属于小题综合,应用到函数的奇偶性和反函数的求法,运用求反函数的方法先求出反函数g(x),然后代入即可.
解答:解:法一:当x<0时,-x>0,由已知f(-x)=3-x-1.
又∵f(x)是奇函数,
∴f(-x)=-f(x),即-f(x)=3-x-1.
∴f(x)=1-3-x
∴f(x)=
3x-1
1-3-x
x≥0
x<0.

∴f-1(x)=
log3(x+1)      x≥0
-log3(1-x)    x<0.

∴f-1(-8)=g(-8)=-log3(1+8)=-log332=-2.
法二:当x<0时,-x>0,由已知f(-x)=3-x-1.
又∵f(x)是奇函数,
∴f(-x)=-f(x),即-f(x)=3-x-1.
∴f(x)=1-3-x.根据反函数定义
令1-3-x=-8 得 x=-2,即:g(-8)=-2
答案为:-2
点评:这里提供的解法一是常规方法,表现为思路清晰易找,推理严谨易懂,但较为繁琐.
解法二直接利用了反函数的函数值与原函数的自变量的值之间的互换特点解决,简捷明了,简单易行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案