精英家教网 > 高中数学 > 题目详情
1.双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$右焦点到渐近线的距离为(  )
A.3B.4C.5D.$\frac{12}{5}$

分析 由双曲线的方程可得焦点和渐近线,代入点到直线的距离公式可求.

解答 解:由双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$可得a=4,b=3,故c=5,
∴右焦点(5,0),渐近线为y=$\frac{3}{4}$x,即3x±4y=0
由点到直线的距离公式可求d=$\frac{3×5}{\sqrt{{3}^{2}+{4}^{2}}}$=3
故选:A

点评 本题考查双曲线的简单性质,涉及点到直线的距离公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2$\sqrt{2}$,且C=$\frac{π}{4}$,则△ABC的面积为$\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某校高三(1)班32名学生参加跳远和掷实心球两项测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是(  )
A.23B.20C.21D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点A(2,m),B(1,2),C(3,1),若$\overrightarrow{AB}•\overrightarrow{CB}=|{\overrightarrow{AC}}|$,则实数m的值为$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{64π}{3}+2\sqrt{3}$B.$\frac{56π}{3}+4\sqrt{3}$C.18πD.22π+4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正四棱台的上、下底面边长分别为1cm,3cm,侧棱长为2cm,则棱台的侧面积为(  )
A.4B.8C.4$\sqrt{3}$D.8$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P(1,4)关于直线y=-x的对称点的坐标是(  )
A.(1,-4)B.(-4,1)C.(4,-1)D.(-4,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$,z=2x+y的最大值为m,若正数a,b满足a+b=m,则$\frac{1}{a}+\frac{4}{b}$的最小值为(  )
A.9B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数 $f(x)={2^x}-\sqrt{x}-14$,若在区间(0,16)内随机取一个数x0,则f(x0)>0的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案