精英家教网 > 高中数学 > 题目详情
7.在复平面内,设z=1+i(i是虚数单位),则$|\frac{2}{z}-z|$=(  )
A.0B.$\sqrt{2}$C.2D.4

分析 把z=1+i代入$\frac{2}{z}-z$,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.

解答 解:由z=1+i,
得$\frac{2}{z}-z=\frac{2}{1+i}-(1+i)=1-i-1-i=-2i$,
∴$|{\frac{2}{z}-z}|=2$.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列命题正确的个数是(  )
①$\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow 0$; ②$\overrightarrow{BC}+\overrightarrow{AB}=\overrightarrow{AC}$; ③$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$; ④$0•\overrightarrow{AB}=0$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xoy中,已知曲线${C_1}:\left\{\begin{array}{l}x=cosα\\ y={sin^2}α\end{array}\right.$(α为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲线C3:ρ=2sinθ
(1)求曲线C1,C2交点的直角坐标
(2)设点A、B分别为曲线C2,C3上的动点,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图是一个几何体的正视图和俯视图.
(1)试判断该几何体是什么几何体?(不用说明理由)
(2)请在正视图的正右边画出其侧视图,并求该平面图形的面积;
(3)求出该几何体的体积与表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四个命题中,正确的个数是(  )
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”,
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④在公差为d的等差数列{an}中,a1=2,a1,a3,a4成等比数列,则公差d为$-\frac{1}{2}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算定积分$\int_{-1}^1{|{x^2}-x|dx=}$1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.集合A={x|x是平面内的三角形},B={x|x是平面内的矩形},C={x|x是平面内的圆},D={x|x>0},给出下列关系:
①f:A→C,作三角形的内切圆;
②f:C→B,作圆的内接矩形;
③f:A→C,作三角形的外接圆;
④f:C→A,作圆的内接三角形;
⑤f:B→D,求矩形的对角线长;
⑥f:C→D,求圆的周长;
其中不是映射的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算
(1)若 A={x|x>1},B={x|-2<x<2},C={x|-3<x<5},求(A∪B)∩C.
(2)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(1.5)^{-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x、y∈R+,x+4y=40,则xy的最大值为100.

查看答案和解析>>

同步练习册答案