精英家教网 > 高中数学 > 题目详情
3.如图的程序框图所描述的算法,若输入m=209,n=121,则输出的m的值为(  )
A.0B.11C.22D.88

分析 先求出m除以n的余数,然后利用辗转相除法,将n的值赋给m,将余数赋给n,进行迭代,一直算到余数为零时m的值即可.

解答 解:当m=209,n=121,m除以n的余数是88
此时m=121,n=88,m除以n的余数是33
此时m=88,n=33,m除以n的余数是22
此时m=33,n=22,m除以n的余数是11,
此时m=22,n=11,m除以n的余数是0,
此时m=11,n=0,
退出程序,输出结果为11,
故选:B.

点评 算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{y+1≥0}\\{x+y+1≤0}\end{array}\right.$,那么2x-y的最大值为(  )
A.2B.1C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=sinxcosx-$\sqrt{3}$cos2x的图象可由函数g(x)=sin(2x+$\frac{π}{3}$)-$\frac{{\sqrt{3}}}{2}$的图象向右平移k(k>0)个单位得到,则k的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知:$\overrightarrow{OA}$=(-3,1),$\overrightarrow{OB}$=(0,5),且$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,则点C的坐标为$(-3,\frac{29}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,B是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上顶点,直线y=b与椭圆右准线交于点A,若以AB为直径的圆与x轴的公共点都在椭圆内部,则椭圆的离心率e的取值范围是($\frac{\sqrt{5}-1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一点P到它的一个焦点的距离等于2,那么点P到另一个焦点的距离等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体中ABCD-A1B1C1D1,E、F分别为AB,AA1的中点.求证:
(1)EF∥D1C;
(2)CE,D1F,DA三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},若a1,a2+1,a3成等差数列,数列{an+1}为公比为2的等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=an•log2(an+1)(n∈N*),其前n项和为Tn,试求满足Tn+$\frac{{n}^{2}+n}{2}$>2015的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$.
(1)若函数f(x)的曲线上一条切线经过点M(0,0),求该切线方程;
(2)求函数f(x)在区间[-3,+∞)上的最大值与最小值.

查看答案和解析>>

同步练习册答案