分析 (1)由平面向量数量积的运算化简已知可得cosA=-$\frac{\sqrt{3}}{2}$,结合A的范围即可得解.
(2)由(1)可得sinA,利用三角形面积公式可求bc=4,又b+c=5,由余弦定理即可解得a的值.
解答 解:(1)∵$\overrightarrow{m}$•$\overrightarrow{n}$=(-cosB)(-cosC)+sinC×(-sinB)=cos(B+C)=-cosA=$\frac{\sqrt{3}}{2}$.
∴cosA=-$\frac{\sqrt{3}}{2}$.
∵A∈(0,π),
∴A=$\frac{5π}{6}$.
(2)∵由(1)可得A=$\frac{5π}{6}$,可求sinA=$\frac{1}{2}$,
∴△ABC的面积S=1=$\frac{1}{2}$bcsinA=$\frac{1}{2}×bc×\frac{1}{2}$,解得:bc=4.
∵b+c=5,
∴由余弦定理可得:a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=$\sqrt{(b+c)^{2}-2bc+\sqrt{3}bc}$=$\sqrt{25-8+4\sqrt{3}}$=$\sqrt{17+4\sqrt{3}}$.
点评 本题主要考查了平面向量数量积的运算,三角形面积公式,余弦定理的综合应用,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x=-$\frac{1}{2}$ | B. | x=-1 | C. | y=-$\frac{1}{2}$ | D. | y=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-y-3=0 | B. | 2x+y-3=0 | C. | x+y-1=0 | D. | 2x-y-5=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com