精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数上单调递增,求实数的取值范围;

(2)若函数有两个不同的零点.

(ⅰ)求实数的取值范围;

(ⅱ)求证:.(其中的极小值点)

【答案】(1);(2)(ⅰ);(ⅱ)证明见解析.

【解析】

1先求其导函数,转化为,即求的最小值即可;
2结合第一问的结论得不单调,故;设有两个根,设为,且,可得原函数的单调性,把问题转化为,即可求解结论.
转化为先证明不等式,若,则再把原结论成立转化为证;构造函数一步步推其成立即可.

(1)由,得

;则

,解得

所以上单调递减,在上单调递增,

所以

因为函数上单调递增,所以恒成立

所以

所以,实数的取值范围是:.

(2)(i)因为函数有两个不同的零点,不单调,所以.

因此有两个根,设为,且

所以上单调递增,在上单调递减,在上单调递增;

,当充分大时,取值为正,因此要使得有两个不同的零点,则必须有,即

又因为

所以:,解得,所以

因此当函数有两个不同的零点时,实数的取值范围是.

(ⅱ)先证明不等式,若,则.

证明:不妨设,即证

只需证

因为

所以上单调递减,上单调递增,

所以,从而不等式得证.

再证原命题.

所以,两边取对数得:

.

因为

所以

因此,要证.

只需证

因为上单调递增,,所以只需证

只需证,即证,其中

,只需证

计算得

.

上单调递增,

所以;即上单调递减,

所以:

上单调递增,所以成立,即原命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

如图,平行四边形中,沿折起到的位置,使平面平面

)求证:

)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的焦点为,过的直线两点,过作与轴垂直的直线,又知点,直线记为交于点.设,已知当时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求证:无论如何变化,点的横坐标是定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若,直线与曲线和曲线都相切,切点分别为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.

(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量(百斤)与使用堆沤肥料(千克)之间对应数据如下表

使用堆沤肥料(千克)

2

4

5

6

8

产量的增加量(百斤)

3

4

4

4

5

依据表中的数据,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量是多少百斤?

(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且);

前8小时内的销售量(单位:份)

15

16

17

18

19

20

21

频数

10

x

16

6

15

13

y

若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,当购进17份比购进18份的利润的期望值大时,求的取值范围.

附:回归直线方程为,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刍甍,中国古代算术中的一种几何图形,《九章算术》中记载刍甍者,下有褒有广,而上有褒无广刍,草也;甍,屋盖也.翻译为底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍甍字面意思为茅草屋顶如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,若用茅草搭建它(无底面,不考虑厚度),则需要覆盖的面积至少为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中, 分别为的中点,点为线段上的一点,将沿折起到的位置,使,如图2.

(1)求证:

(2)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中,已知.

1)当四面体体积最大时,求的值;

2)当时,设四面体的外接球球心为,求和平面所成夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:①“”是“”的充分不必要条件;②命题“”的否定是“”;③小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件为“4个人去的景点不相同”,事件为“小赵独自去一个景点”,则;④设,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值是6587.(注:若,则)其中正确说法的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案