精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f( )>f(π),则f(x)的单调递增区间是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

【答案】C
【解析】解:若 对x∈R恒成立,
则f( )等于函数的最大值或最小值
即2× +φ=kπ+ ,k∈Z
则φ=kπ+ ,k∈Z

即sinφ<0
令k=﹣1,此时φ= ,满足条件
令2x ∈[2kπ﹣ ,2kπ+ ],k∈Z
解得x∈
故选C
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点 分别为椭圆的右顶点、上顶点和右焦点,且

(1)求椭圆的方程;

(2)已知直线 被圆 所截得的弦长为,若直线与椭圆交于 两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的一个顶点为A(0,1),离心率为 ,过点B(0,﹣2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2
(1)求椭圆的方程;
(2)求△CDF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的最小正周期为2 π,最小值为﹣2,且当x= 时,函数取得最大值4. (Ⅰ)求函数 f(x)的解析式;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)若当x∈[ ]时,方程f(x)=m+1有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直二面角D﹣AB﹣E中,四边形ABCD是边长为2的正方形,AE=EB,点F在CE上,且BF⊥平面ACE;
(1)求证:AE⊥平面BCE;
(2)求二面角B﹣AC﹣E的正弦值;
(3)求点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R. (Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)ex . 求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
(1)证明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,D是AC的中点,EF∥DB.
(1)已知AB=BC,AF=CF,求证:AC⊥平面BEF;
(2)已知G、H分别是EC和FB的中点,求证:GH∥平面ABC.

查看答案和解析>>

同步练习册答案