【题目】设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A(-1,1)的距离与点P到直线x= - 1的距离之和的最小值为M,若B(3,2),记|PB|+|PF|的最小值为N,则M+N= ______________
【答案】
【解析】
当P、A、F三点共线时,点P到点A(-1,1)的距离与点P到直线x= - 1距离之和最小,由两点间的距离公式可得M;
当P、B、F三点共线时,|PB|+|PF|最小,由点到直线的距离公式可得.
可得抛物线y2=4x的焦点F(1,0),准线方程为x=﹣1,
∴点P到点A(﹣1,1)的距离与点P到直线x=﹣1的距离之和
等于P到点A(﹣1,1)的距离与点P到焦点F的距离之和,
当P、A、F三点共线时,距离之和最小,且M=|AF|,
由两点间的距离公式可得M=|AF|;
由抛物线的定义可知|PF|等于P到准线x=﹣1的距离,
故|PB|+|PF|等于|PB|与P到准线x=﹣1的距离之和,
可知当P、B、F三点共线时,距离之和最小,
最小距离N为3﹣(﹣1)=4,
所以M+N=,
故答案为.
科目:高中数学 来源: 题型:
【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.表为10名学生的预赛成绩,其中有三个数据模糊.
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )
A. 2号学生进入30秒跳绳决赛 B. 5号学生进入30秒跳绳决赛
C. 8号学生进入30秒跳绳决赛 D. 9号学生进入30秒跳绳决赛
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),直线的参数程为(为参数),设直线与的交点为,当变化时点的轨迹为曲线.
(1)求出曲线的普通方程;
(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,点为曲线的动点,求点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,且过点A (2,2),椭圆的离心率为,点B为抛物线C与椭圆D的一个公共点,且.
(Ⅰ)求椭圆D的方程;
(Ⅱ)过椭圆内一点P(0,t)的直线l的斜率为k,且与椭圆C交于M,N两点,设直线OM,ON(O为坐标原点)的斜率分别为k1,k2,若对任意k,存在实数λ,使得k1+ k2=λk,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国第一高摩天轮“南昌之星摩天轮”高度为,其中心距地面,半径为,若某人从最低点处登上摩天轮,摩天轮匀速旋转,那么此人与地面的距离将随时间变化,后达到最高点,从登上摩天轮时开始计时.
(1)求出人与地面距离与时间的函数解析式;
(2)从登上摩天轮到旋转一周过程中,有多长时间人与地面距离大于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,过点且斜率不为0的直线与交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,已知,对任意都成立,数列的前n项和为.
(1)若是等差数列,求k的值;
(2)若,,求;
(3)是否存在实数k,使数列是公比不为1的等比数列,且任意相邻三项,,按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)如图,长方形材料中,已知,.点为材料内部一点,于,于,且,. 现要在长方形材料中裁剪出四边形材料,满足,点、分别在边,上.
(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;
(2)试确定点在上的位置,使得四边形材料的面积最小,并求出其最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com