精英家教网 > 高中数学 > 题目详情
12.下列函数中,周期为2的奇函数为(  )
A.y=sin2xB.y=cos2πxC.y=cos[2(πx-$\frac{π}{4}$)]-$\frac{1}{2}$D.y=tan$\frac{π}{2}$x

分析 根据已知中的2个条件:①奇函数;③以2为周期的函数,我们结合正弦函数、余弦函数及正切型函数的性质,逐一分析四个答案中的函数,即可得到答案.

解答 解:A中,y=sin2x,可求周期T=$\frac{2π}{2}$=π,不满足;
B中,y=cos2πx,可求周期T=$\frac{2π}{2π}$=1,不满足;
C中,y=cos[2(πx-$\frac{π}{4}$)]-$\frac{1}{2}$=sin2πx$-\frac{1}{2}$,可求周期T=$\frac{2π}{2π}$=1,不满足;
D中,y=tan$\frac{π}{2}$x,可求周期T=$\frac{π}{\frac{π}{2}}$=2,又tan(-$\frac{π}{2}$x)=-tan$\frac{π}{2}$x,满足条件.
故选:D.

点评 本题主要考查了诱导公式的应用,考查了正弦函数、余弦函数、正切函数的图象和性质,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列函数,在其定义域内既是奇函数又是增函数的是(  )
A.y=-log2xB.y=3xC.y=-$\frac{1}{x}$D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x+3|+|x-1|的最小值为m.
(1)求m的值;
(2)若正实数a,b满足$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{3}$,求证:$\frac{1}{{a}^{2}}$+$\frac{2}{{b}^{2}}$≥$\frac{m}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的单调区间:(1)y=sin2x,x∈R:(2)y=sin$\frac{x}{2}$,x∈R:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当x∈[$\frac{π}{6}$,$\frac{π}{3}$]时,k+tan(2x-$\frac{π}{3}$)的值总大于0,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a$\sqrt{1-{b}^{2}}$+b$\sqrt{1-{a}^{2}}$=1,求证:a2+b2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:(x2-x)2≥36,命题q:x∈Z.若p∧q与¬q同时为假命题,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)是奇函数,当x<0,f(x)=-x2+x.若不等式f(x)-x≤2logax(a>0,a≠1)对?x∈(0,$\frac{\sqrt{2}}{2}$]恒成立,则实数a的取值范围是[$\frac{1}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.F是椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的左焦点,P是椭圆上的动点,A(1,1)为定点,则|PA|+|PF|的最小值是(  )
A.9-$\sqrt{2}$B.3+$\sqrt{2}$C.6-$\sqrt{2}$D.6+$\sqrt{2}$

查看答案和解析>>

同步练习册答案