精英家教网 > 高中数学 > 题目详情

给定数列{xn},x1=1,且数学公式,则x1+x2+…x2011=


  1. A.
    1
  2. B.
    -1
  3. C.
    2+数学公式
  4. D.
    -2+数学公式
A
分析:先有已知求数列{xn}的通项公式,但发现并不好求,这时可考虑数列{xn}是否未循环数列,可逐一求出数列前几项,找规律,发现数列{xn}为循环数列,周期为6,所以很容易求出x1+x2+…x2011的值.
解答:由x1=1,且,可求x2=2+,x3=-2-,x4=-1,x5=-2,x6=2-,x7=1,
所以数列{xn}为循环数列,周期为6,且x1+x2+x3+x4+x5+x6=0,所以x1+x2+…x2011=x1=1
故选A
点评:本题考查了循环数列中,前n项和的求法,做题时,要善于发现规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)满足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均为常数)
(1)求函数y=f(x)的解析式;
(2)利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,构造数列的过程继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个常数列{xn},求a的取值范围;
②如果取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求a实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知函数f(x)=
x+1-tt-x
(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知函数f(x)=
x+1-tt-x
(t为常数).
(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).
(2)设an=f(n)(n∈N*),当t>10,且t∉N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).
(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若取定义域中的任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>2,给定数列{xn},其中x 1=a,xn+1=
x
2
n
2(xn-1)
(n∈N*)
求证:
(1)xn>2,且xn+1<xn(n∈N*);
(2)如果2<a≤3,那么xn≤2+
1
2n-1
(n∈N*)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a>2,给定数列{xn},其中x 1=a,xn+1=
x2n
2(xn-1)
(n∈N*)
求证:
(1)xn>2,且xn+1<xn(n∈N*);
(2)如果2<a≤3,那么xn≤2+
1
2n-1
(n∈N*)

查看答案和解析>>

同步练习册答案