精英家教网 > 高中数学 > 题目详情

【题目】已知 , ,求直角顶点C的轨迹方程。

【答案】【解答】解:以所在直线为x轴,的中点为坐标原点,建立如图所示的直角坐标系,则有,,设顶点

法一:由是直角三角形可知 ,即 ,化简得 ,依题意可知
故所求直角顶点 C的轨迹方程为
法二:由 是直角三角形可知 ,所以 ,则 ,化简得直角顶点C 的轨迹方程为
法三:由是直角三角形可知,且点C与点B不重合,所以 ,化简得直角顶点C的轨迹方程为
【解析】本题主要考查了平面直角坐标系与曲线方程,解决问题的关键是需要结合几何图形的结构特点,建立适当的平面直角坐标系,然后设出所求动点的坐标,寻找满足几何关系的等式,化简后即可得到所求的轨迹方程;
求轨迹方程,其实质就是根据题假设条件,把几何关系通过“坐标”转化成代数关系,得到对应的方程、(1)求轨迹方程时的一般步骤是:建系 设点 列式 化简 检验;(2)求轨迹方程时注意不要把范围扩大或缩小,也就是要检验轨迹的纯粹性和完备性;(3)由于观察的角度不同,因此探求关系的方法也不同,解题时要善于从对角度思考问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,若,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合 ,B={x|1<x<6}
(1)求A∩UB;
(2)已知C={x|a≤x≤a+1},若A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).

(1)分别写出两种产品的收益和投资的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为为实数.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线与曲线有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中为常数, 为自然对数的底数),曲线在点处的切线与轴平行.

1)求的单调区间;

2)当时,若函数有两个不同零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,圆的极坐标方程为: .若以极点为原点,极轴所在直线为轴建立平面直角坐标系.

(Ⅰ)求圆的直角坐标方程及其参数方程;

(Ⅱ)在直角坐标系中,点是圆上动点,求的最大值,并求出此时

的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种大型商品,A,B两地都有出售,且价格相同、某地居民从两地之一购得商品后运回的费用是:每单位距离A地的运费是B地的运费的3倍,已知A,B两地距离为10千米,顾客选择A或B地购买这种商品的标准是:包括运费和价格的总费用较低,求A,B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值10.

1)求实数的值;

2)设,讨论函数在区间上的单调性.

查看答案和解析>>

同步练习册答案