精英家教网 > 高中数学 > 题目详情

【题目】平面内任意一点到两定点的距离之和为.

(1)若点是第二象限内的一点且满足,求点的坐标;

(2)设平面内有关于原点对称的两定点,判别是否有最大值和最小值,请说明理由?

【答案】(1);(2)有最大值,最小值.

【解析】

由椭圆的定义可以直接求出椭圆的标准方程.

1)根据数量积的坐标运算公式,得到等式,与椭圆的标准方程联立,解方程即可;

2)设出两点坐标,根据平面向量数量积的坐标表示公式,结合点在椭圆上和椭圆的范围,可以求出的最大值及最小值.

因为,所以椭圆的定义可知:点的轨迹是以为焦点的椭圆,,所以点的轨迹方程为:.

1)设点的坐标为:,所以

因为,所以,与联立,解得

,点的坐标为

2)存在最大值和最小值,理由如下:

根据题意,设的坐标分别为:

所以,因为,所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平行四边形中,边的中点,沿折起使得平面平面.

1)求证:平面平面

2)求四棱锥的体积;

3)求折后直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为为参数),圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为实数).

1)若为偶函数,求实数的值;

2)设,求函数的最小值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲同学参加化学竞赛初赛,考试分为笔试、口试、实验三个项目,各单项通过考试的概率依次为,笔试、口试、实验通过考试分别记4分、2分、4分,没通过的项目记0分,各项成绩互不影响.

(Ⅰ)若规定总分不低于8分即可进入复赛,求甲同学进入复赛的概率;

(Ⅱ)记三个项目中通过考试的个数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是直角梯形,平面,中点,且.

1)求证:平面

2)若与底面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)求函数的极值;

(2)对,不等式都成立,求整数k的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的四个顶点都在球的表面上,平面,则:(1)球的表面积为__________;(2)若的中点,过点作球的截面,则截面面积的最小值是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

1)讨论在其定义域上的单调性;

2)设mn分别为的极大值和极小值,若S=m-n,求S的取值范围.

查看答案和解析>>

同步练习册答案