精英家教网 > 高中数学 > 题目详情

【题目】已知函数处有极值.

(1)求的值;

(2)求的单调区间.

【答案】(1);(2)单调减区间是(0,1),单调增区间是(1,+∞).

【解析】试题分析: 1f′x)=2ax.由题意可得: ,解得a,b.

2fx)=x2lnxf′x=x.函数定义域为(0,+∞).令f′(x)0f′x)<0,分别解出即可得出单调区间.

试题解析:

1fx)=2ax.fx)在x1处有极值

解得ab=-1.

2)由(1)可知fx)=x2lnx,其定义域是(0,+),

f′x)=x.

f′(x)<0,得0<x<1;由f′(x)>0,得x>1.

所以函数y=f(x)的单调减区间是(0,1),单调增区间是(1,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)的部分图象如图所示.

(1)f(x)的最小正周期及解析式;

(2)设函数g(x)=f(x)-cos 2x,g(x)在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).

(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为(2-p , -p);
②求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2 ,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是(  )
A.内切
B.相交
C.外切
D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, .直角梯形通过直角梯形以直线为轴旋转得到,且使平面平面. 为线段的中点, 为线段上的动点.

(1)求证:

(2)当点是线段中点时,求二面角的余弦值;

(3)是否存在点,使得直线平面?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(1)证明:A=2B;
(2)若cosB= ,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的图象与g(x)的图象关于直线x= 对称,则g(x)的图象的一个对称中心为(
A.( ,0)
B.( ,0)
C.( ,0)
D.( ,0)

查看答案和解析>>

同步练习册答案