【题目】已知直线,椭圆分别为椭圆的左、右焦点.
(1)当直线过右焦点时,求椭圆的标准方程;
(2)设直线与椭圆交于两点,为坐标原点,且,若点在以线段为直径的圆内,求实数的取值范围.
【答案】(1);(2).
【解析】
(1)求出直线与轴的交点坐标,可得,再由椭圆的方程可得,联立方程可求出,从而可得椭圆的标准方程;
(2) 设,,联立直线的方程与椭圆的方程消去,由判别式求出的范围,再利用根与系数关系求出和,根据,可得,,其中点坐标,由两点间距离公式可得,又点在以线段为直径的圆内,故,即,把和结果代入,即可求出实数的取值范围.
解:(1)由已知可得直线与轴的交点坐标,所以①,
又②,由①②解得,,
所以椭圆C的方程为.
(2)设,,
由得,
由,又,解得 ①,
由根与系数关系,得,
由,可得,,
,
设是的中点,则,
由已知可得,即,
整理得,
又,
所以,
所以,
即,
即,所以 ②,
综上所述,由①②得a的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知点,点为曲线上的动点,过作轴的垂线,垂足为,满足。
(1)求曲线的方程;
(2)直线与曲线交于两不同点,( 非原点),过,两点分别作曲线的切线,两切线的交点为。设线段的中点为,若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线:与直线:交于,两点.
(1)若的面积为,求;
(2)轴上是否存在点,使得当变动时,总有?若存在,求以线段为直径的圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的指标和指标,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指标 | 2 | 4 | 5 | 6 | 8 |
指标 | 3 | 4 | 4 | 4 | 5 |
(1)试求与间的相关系数,并说明与是否具有较强的线性相关关系(若,则认为与具有较强的线性相关关系,否则认为没有较强的线性相关关系).
(2)建立关于的回归方程,并预测当指标为7时,指标的估计值.
(3)若某城市的共享单车指标在区间的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至指标在区间内现已知省某城市共享单车的指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.
参考公式:回归直线中斜率和截距的最小二乘估计分别为
,,相关系数
参考数据:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=( ).
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)若函数在上是增函数,求正数的取值范围;
(2)当时,设函数的图象与x轴的交点为,,曲线在,两点处的切线斜率分别为,,求证:+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图象相邻两条对称轴的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称则函数的图象( )
A. 关于直线对称 B. 关于直线对称
C. 关于点对称 D. 关于点对称
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com