精英家教网 > 高中数学 > 题目详情
如图,在菱形ABCD中,MA⊥平面ABCD,且四边形ADNM是平行四边形.
(1)求证:AC⊥BN;
(2)当点E在AB的什么位置时,使得AN∥平面MEC,并加以证明.
分析:(1)要证明AC⊥BN,只要证明AC⊥平面NDB,而由已知可知AC⊥BD,则只要证出AC⊥DN,结合已知容易证明
(2)当E为AB的中点时,设CM与BN交于F,由已知可得AN∥EF,结合线面平行的判定定理可证
解答:证明:(1)连接BD,则AC⊥BD.
由已知DN⊥平面ABCD,
DN⊥AC
因为DN∩DB=D,
所以AC⊥平面NDB.
又因为BN?平面NDB,
所以AC⊥BN.…(6分)
(2)当E为AB的中点时,有AN∥平面MEC.…(7分)
CM与BN交于F,连接EF.
由已知可得四边形BCNM是平行四边形,F是BN的中点,
因为E是AB的中点,
所以AN∥EF.…(10分)
又EF?平面MEC,AN?平面MEC,
所以AN∥平面MEC.…(13分)
点评:本题主要考查了线面垂直、线面平行的判定定理的简单应用,体现了线面、面面平行于垂直关系的相互转化
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,且PA=AB=2,E、F分别是AB与PD的中点.
(Ⅰ)求证:PC⊥BD;
(Ⅱ)求证:AF∥平面PEC;
(Ⅲ)求二面角P-EC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在菱形ABCD中,∠DAB=60°,E是AB的中点,MA⊥平面ABCD,且在矩形ADNM中,AD=2,AM=
3
7
7

(1)求证:AC⊥BN;
(2)求证:AN∥平面MEC;
(3)求二面角M-EC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大丰市一模)如图,在菱形ABCD中,E是AB的中点,且DE⊥AB.
(1)求∠ABD的度数;
(2)若菱形的边长为2,求菱形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在菱形ABCD中,∠BAD=120°,点N为CD中点,PA⊥平面ABCD.
(I)求证:CD⊥平面PAN;
(II)若点M为PC中点,AB=1,PA=
3
,求直线AM与平面PCD所成角的正弦值.

查看答案和解析>>

同步练习册答案