精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , an是Sn和1的等差中项.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

【答案】
(1)解:∵an是Sn和1的等差中项,

∴2an=Sn+1,2an1=Sn1+1(n≥2),

两式相减得:2an﹣2an1=an,即an=2an1

又∵2a1=S1+1,即a1=1,

∴数列{an}是首项为1、公比为2的等比数列,

∴an=2n1


(2)解:由(1)可知Tn=120+221+322+…+n2n1

2Tn=121+222+…+(n﹣1)2n1+n2n

两式相减得:﹣Tn=1+21+22+…+2n1﹣n2n

= ﹣n2n

=﹣1﹣(n﹣1)2n

∴Tn=1+(n﹣1)2n


【解析】(1)通过等差中项的性质可知2an=Sn+1,并与2an1=Sn1+1(n≥2)作差,进而整理可知数列{an}是首项为1、公比为2的等比数列,计算即得结论;(2)通过(1)可知Tn=120+221+322+…+n2n1 , 进而利用错位相减法计算即得结论.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣7|+1.
(1)求不等式f(x)≤x的解集;
(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四面体ABCD中,△ABC是正三角形,AD=CD.(12分)
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)求函数的最小值和最小正周期;

Ⅱ)已知内角的对边分别为,且,若向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为(
A.48
B.16
C.32
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF.
(Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱锥中,侧面是边长为2的正三角形,底面是菱形,且的中点,二面角.

(1)求证:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是等比数列,则下列结论中正确的是( )

A. 若a1=1,a5=4,则a3=﹣2

B. 若a1+a3>0,则a2+a4>0

C. 若a2>a1,则a3>a2

D. 若a2>a1>0,则a1+a3>2a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,求函数 处的切线方程
(2)设函数 ,求 的单调区间.
(3)若存在 ,使得 成立,求 的取值范围。

查看答案和解析>>

同步练习册答案