精英家教网 > 高中数学 > 题目详情
正四棱柱ABCD-A1B1C1D1中,底面边长为a,侧棱AA1长为ka(k>0),E为侧棱BB1的中点,记以AD1为棱,EAD1,A1AD1为面的二面角大小为θ.
(1)是否存在k值,使直线AE⊥平面A1D1E,若存在,求出k值;若不存在,说明理由;
(2)试比较tanθ与2
2
的大小.
(1)存在k=2,使得AE⊥平面A1D1E
证明:若AE⊥平面A1D1E,则AE⊥A1E,于是AE2+A1E2=AA12
2[a2+(
ka
2
)2]=(ka)2
,解得k=2,
∴存在k=2,使得AE⊥平面A1D1E.
(2)取A1A中点M,连接EM,在正四棱柱AC1中,EM⊥平面ADD1A1,过M作MH⊥AD1于H,连接EH,则∠MHE为二面角E-AD1-A1的平面角,即∠MHE=θ,
在Rt△AA1D1中,
MH
A1D1
=
AM
AD1
,即MH=
ka
2
1+k2

在Rt△EMH中,tanθ=
EM
MH
=2
1+
1
k2

当0<k<1时,tanθ>2
2

当k=1时,tanθ=2
2

当k>1时,tanθ<2
2

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,已知锐二面角α-l-β,A为α面内一点,A到β的距离为2
3
,到l的距离为4,则二面角α-l-β的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PO⊥平面ABCD,点O在AB上,EAPO,四边形ABCD是直角梯形,ABDC,且BC⊥AB,BC=CD=BO=PO,EA=AO=
1
2
CD

(Ⅰ)求证:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大小;
(Ⅲ)在线段PE上是否存在一点M,使DM平面PBC,若存在求出点M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,点O是正方形纸片ABCD的中心,点E,F分别为AD,BC的中点,现沿对角线AC把纸片折成直二面角,则纸片折后∠EOF的大小为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科做)(1)证明:面APC⊥面BEF;
(2)求平面PBC与平面PCD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a.
(I)若M是底面ABCD的一个动点,且满足|MB|=|MS|,求点M在正方形ABCD内的轨迹;
(II)试问在线段SD上是否存在点E,使二面角C-AE-D的大小为60°?若存在,确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正三棱柱ABC-A1B1C1的底面边长为2,高为1,过顶点A作一平面α与侧面BCC1B1交于EF,且EFBC.若平面α与底面ABC所成二面角的大小为x(0<x≤
π
6
)
,四边形BCEF面积为y,则函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥的高为
3
,侧棱长为
7
,那么侧面与底面所成二面角的大小是(  )
A.60°B.30°C.arccos
21
7
D.arcsin
21
7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD中,点E、F分别是边AB、BC上的点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′.
(1)△A′EF恰好是正三角形且Q是A′F的中点,求证:EQ⊥平面A′FD
(2)当E、F分别是AB、BC的中点时,求二面角A′-EF-D的正弦值.

查看答案和解析>>

同步练习册答案