精英家教网 > 高中数学 > 题目详情
3.设全集U=R,集合A={x|(1-2x)(x+3)>0},B={x|$\frac{1}{x}$>1},则图中阴影部分所表示的集合是[$\frac{1}{2}$,1).(用区间表示)

分析 由图象可知阴影部分对应的集合为B∩(∁UA),然后根据集合的基本运算即可.

解答 解:由图象可知阴影部分对应的集合为B∩(∁UA),
A={x|(1-2x)(x+3)>0}={x|-3<x<$\frac{1}{2}$},B={x|$\frac{1}{x}$>1}={x|0<x<1},
∴∁UA={x|x≥$\frac{1}{2}$或x≤-3},
∴B∩(∁UA)={x|$\frac{1}{2}$≤x<1}=[$\frac{1}{2}$,1),
故答案为:[$\frac{1}{2}$,1)

点评 本题主要考查集合的基本运算,利用Venn图确定集合的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.球的半径扩大到原来的n倍,其表面积和体积分别扩大到原来的(  )倍.
A.n和n2B.n和n3C.n2和n3D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在集合{a,b,c,d}上定义两种运算⊕和?如下:

那么d?(a⊕c)=a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,A、B、C的对边分别是a,b,c,(a2+c2-b2)tanB=$\frac{4\sqrt{2}}{3}$ac.
(1)求sinB的值;
(2)若b=2,S△ABC=$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用列举法表示集合{x|x+y=4,x∈N,y∈N+}={0,1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,函数f(x)=min{|x-1|,-x2+11},若集合A={x|f(x)=m}中有4个元素,则实数m的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知k为实数,解关于x的不等式(kx-k2-1)(x-2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某城区有大学生3500人、中学生4000人,小学生4500人,为掌握各类学生的消费情况,现按分层抽样方法抽取一个容量为300的样本,应抽取中学生100人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式组$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤0}\end{array}\right.$表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案