精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C的标准方程;
(2)D为椭圆C的右顶点,设A是椭圆上异于D的一动点,作AD的垂线交椭圆与点B,求证:直线AB过定点,并求出该定点的坐标.
分析:(1)由题设条件可知
a+c=3
a-c=1
解得
a=2
c=1
,由此能够推导出椭圆C的标准方程.
(2)设l:y=kx+m,由方程组
x
2
 
4
+
y2
3
=1
y=kx+m
消去y,得(3+4k2)x2+8kmx+4m2-12=0,然后结合题设条件利用根的判别式和根与系数的关系求解.
解答:解:(1)由题意设椭圆的标准方程为
x2
a2
+
y2
b2
=1(a>b>0)

a+c=3,a-c=1,a=2,c=1,b2=3,
x2
4
+
y2
3
=1

(2)设A(x1,y1),B(x2,y2),l:y=kx+m,
y=kx+m
x2
4
+
y2
3
=1
,得:(3+4k2)x2+8mkx+4(m2-3)=0,
△=64m2k2-16(3+4k2)(m2-3)>0,3+4k2-m2>0x1+x2=-
8mk
3+4k2
x1x2=
4(m2-3)
3+4k2
y1y2=(kx1+m)•(kx2+m)=k2x1x2+mk(x1+x2)+m2=
3(m2-4k2)
3+4k2

∵AD⊥BD,kAD•kBD=-1,(或
AD
BD
=0

y1
x1-2
y2
x2-2
=-1
,y1y2+x1x2-2(x1+x2)+4=0,
3(m2-4k2)
3+4k2
+
4(m2-3)
3+4k2
+
16mk
3+4k2
+4=0
,7m2+16mk+4k2=0,
解得m1=-2k,m2=-
2k
7
,且满足3+4k2-m2>0
当m=-2k时,l:y=k(x-2),直线过定点(2,0),与已知矛盾;
m=-
2k
7
时,l:y=k(x-
2
7
)
,直线过定点(
2
7
,0)

综上可知,直线AB过定点,定点坐标为(
2
7
,0)
点评:本题综合考查椭圆的性质及应用和直线与椭圆的位置关系,具有较大的难度,解题时要注意的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,椭圆C任意一点P到两个焦点F1(-
3
,0)
F2(
3
,0)
的距离之和为4.
(1)求椭圆C的方程;
(2)设过(0,-2)的直线l与椭圆C交于A、B两点,且
OA
OB
=0
(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,
32
)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2M⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P(
3
1
2
)
,离心率是
3
2

(1)求椭圆C的标准方程;
(2)直线l过点E(-1,0)且与椭圆C交于A,B两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区一模)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率为
1
2
,它的一个顶点恰好是抛物线y=
3
12
x2的焦点.
(I)求椭圆C的标准方程;
(II)若A、B是椭圆C上关x轴对称的任意两点,设P(-4,0),连接PA交椭圆C于另一点E,求证:直线BE与x轴相交于定点M;
(III)设O为坐标原点,在(II)的条件下,过点M的直线交椭圆C于S、T两点,求
OS
OT
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,它的一条准线为x=-
5
2
,离心率为
2
5
5

(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆于A、B两点,交y轴于M点,若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步练习册答案