精英家教网 > 高中数学 > 题目详情

已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.

(1)求椭圆C的方程;

(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.

 

【答案】

(1)

(2)

【解析】

试题分析:(1)依题意,设椭圆的方程为.

构成等差数列,

, .

,.

椭圆的方程为   

(2) 将直线的方程代入椭圆的方程中,

 

由直线与椭圆仅有一个公共点知,,

化简得: 

,

(法一)当时,设直线的倾斜角为,

,

,      

,时,,,.

时,四边形是矩形, 

所以四边形面积的最大值为 

(法二)

四边形的面积,                        

                                                   

当且仅当时,,故

所以四边形的面积的最大值为 

考点:直线与椭圆的位置关系

点评:主要是考查了椭圆方程,以及直线与椭圆的位置关系的运用,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点F1(-1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是(  )
A、
x2
16
+
y2
9
=1
B、
x2
16
+
y2
12
=1
C、
x2
4
+
y2
3
=1
D、
x2
3
+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点F1(-
2
,0)
F2(
2
,0)
,满足条件|PF2|-|PF1|=2的动点P的轨迹是曲线E,直线 l:y=kx-1与曲线E交于A、B两点.
(Ⅰ)求k的取值范围;
(Ⅱ)如果|AB|=6
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点F1(-
2
,0)
F2(
2
,0)
,曲线C上的动点P(x,y)满足
.
PF1
.
PF2
+|
.
PF1
|×|
.
PF2
|=2.
(I)求曲线C的方程;
(II)设直线l:y=kx+m(k≠0),对定点A(0,-1),是否存在实数m,使直线l与曲线C有两个不同的交点M、N,满足|AM|=|AN|?若存在,求出m的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点F1(-2,0),F2(2,0),曲线C1上的动点P满足|PF1|+|PF2|=
2
|F1F2|

(1)求曲线C1的方程;
(2)设曲线C2的方程为|x|+|y|=m(m>0),当C1和C2有四个不同的交点时,求实数m的取值范围.

查看答案和解析>>

同步练习册答案