精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线C的方程为: =1
(1)求双曲线C的离心率;
(2)求与双曲线C有公共的渐近线,且经过点A(﹣3,2 )的双曲线的方程.

【答案】
(1)解:由题意知a2=9,b2=16,

所以c2=a2+b2=25,

则a=3,c=5,

所以该双曲线的离心率e= =


(2)解:根据题意,则可设双曲线的标准方程为 =λ,(λ≠0);

又因为双曲线经过点A(﹣3,2

代入方程可得,λ=

故这条双曲线的方程为 =1


【解析】(1)利用双曲线的方程的标准形式,求出a、b、c 的值,即得离心率的值.(2)根据题意中所给的双曲线的渐近线方,则可设双曲线的标准方程为 ,(λ≠0);将点 代入方程,可得λ=﹣1;即可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x+ sinxcosx.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间[﹣ ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的定义域为{x|﹣2≤x≤3,且x≠2},值域为{y|﹣1≤y≤2,且y≠0},则y=f(x)的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=﹣x+1与椭圆 + =1(a>b>0)相交于A、B两点,且线段AB的中点在直线l:x﹣2y=0上,求此椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的左右焦点分别为F1 , F2 , 抛物线y2=4x与椭圆C有相同的焦点,且椭圆C过点 . (I)求椭圆C的标准方程;
(Ⅱ)若椭圆C的右顶点为A,直线l交椭圆C于E、F两点(E、F与A点不重合),且满足AE⊥AF,若点P为EF中点,求直线AP斜率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品在某销售点的零售价x(单位:元)与每天的销售量y(单位:个)的统计数据如表所示:

x

16

17

18

19

y

50

34

41

31

由表可得回归直线方程 中的 ,根据模型预测零售价为20元时,每天的销售量约为(
A.30
B.29
C.27.5
D.26.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定圆C半径为2,A为圆C上的一个定点,B为圆C上的动点,若点A,B,C不共线,且| | |对任意t∈(0,+∞)恒成立,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(0)=0,f(x)+f(1﹣x)=1,f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.

查看答案和解析>>

同步练习册答案