精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中, 平面 .

(I)求异面直线所成角的余弦值;

(II)求证: 平面

(Ⅲ)求直线与平面所成角的正弦值.

【答案】(Ⅰ).(Ⅱ)见解析;(Ⅲ).

【解析】试题分析:本小题主要考查两条异面直线所成的角、直线与平面垂直、直线与平面所成的角等基础知识.求两条异面直线所成的角,首先要借助平行线找出异面直线所成的角,然后借助解三角形求出角,证明线面垂直只需寻求线线垂直,求线面角首先利用转化思想寻求直线与平面所成的角,本题作 是一步重要的转化,寻求斜线、垂线,斜足、垂足、斜线在平面内的射影,找到线面角后利用三角形边角关系求出线面角.求线面角也可转化为点到平面的距离“盲求”.

考查空间想象能力、运算求解能力和推理论证能力.

试题解析:(Ⅰ)如图,由已知AD//BC,学|科网故或其补角即为异面直线APBC所成的角.因为AD⊥平面PDC,所以ADPD.在Rt△PDA中,由已知,得,故.

所以,异面直线APBC所成角的余弦值为.

(Ⅱ)证明:因为AD⊥平面PDC,直线PD平面PDC,所以ADPD.又因为BC//AD,所以PDBC,又PDPB,所以PD⊥平面PBC.

(Ⅲ)解:过点DAB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.

因为PD⊥平面PBC,故PFDF在平面PBC上的射影,所以为直线DF和平面PBC所成的角.

由于AD//BCDF//AB,故BF=AD=1,由已知,得CF=BCBF=2.又ADDC,故BCDC,在Rt△DCF中,可得,在Rt△DPF中,可得.

所以,直线AB与平面PBC所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表: A型车

出租天数

1

2

3

4

5

6

7

车辆数

5

10

30

35

15

3

2

B型车

出租天数

1

2

3

4

5

6

7

车辆数

14

20

20

16

15

10

5

( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A (1,2),B(a,1),C(2,3),D(﹣1,b)(a,b∈R)是复平面上的四个点,且向量 对应的复数分别为z1 , z2 . (Ⅰ)若z1+z2=1+i,求z1 , z2
(Ⅱ)若|z1+z2|=2,z1﹣z2为实数,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x(lnx﹣ax)(a∈R)在区间(0,2)上有两个极值点,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2. (Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ]时f(x)的值域;
(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,SABC= ,c=2,f(C+ )= .求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,g(x)=2x+a,若x1∈[ ,3],x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是(
A.a≤1
B.a≥1
C.a≤0
D.a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx;g(x)=
(1)讨论函数f(x)的单调性;
(2)求证:若a=e(e是自然常数),当x∈[1,e]时,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],当a>1时,对于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范围.

查看答案和解析>>

同步练习册答案