精英家教网 > 高中数学 > 题目详情

【题目】下列命题中真命题的个数是  

中,的三内角ABC成等差数列的充要条件;

若“,则”的逆命题为真命题;

充分不必要条件;

的充要条件.

A.1个B.2个C.3个D.4个

【答案】B

【解析】

中,的三内角ABC成等差数列;在中,当时不成立;在中,的逆否命题是真命题;在中,的充分不必要条件.

中,的三内角ABC成等差数列,故正确;

若“,则”的逆命题“若,则”,

时不成立,故若“,则”的逆命题为假命题,故错误;

的逆否命题是:

,则,真命题,

充分不必要条件,故正确;

在定义域范围内是单增函数:可得到

在定义域范围内是单增函数:可得到

可见,,但是当时,推不出

不存在,的充分不必要条件,故错误.

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.

1)求曲线的普通方程和极坐标方程;

2)设直线与曲线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求的值;

2)若的导函数存在两个不相等的零点,求实数的取值范围;

3)当时,是否存在整数,使得关于的不等式恒成立?若存在,求出的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照6组进行统计,得到男生、女生每周运动的时长的统计如下(表12),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.

1:男生

时长

人数

2

8

16

8

4

2

2:女生

时长

人数

0

4

12

12

8

4

1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;

2)根据题目条件,完成下面列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.

每周运动的时长小于15小时

每周运动的时长不小于15小时

总计

男生

女生

总计

参考公式:,其中.

参考数据:

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数, ).

(1)求曲线的直角坐标方程和直线的普通方程;

(2)若曲线上的动点到直线的最大距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则____________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的左、右焦点分别是,点的上顶点,点上,,且.

1)求的方程;

2)已知过原点的直线与椭圆交于两点,垂直于的直线且与椭圆交于两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,则实数a的取值范围为(  )

A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两定点,点P满足.

1)求点P的轨迹C的方程;

2)若,直线l与轨迹C交于AB两点,的斜率之和为2,问直线l是否恒过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案