精英家教网 > 高中数学 > 题目详情

把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2009,则n=


  1. A.
    1026
  2. B.
    1027
  3. C.
    1028
  4. D.
    1029
B
分析:根据题意,分析图乙,可得其第k行有k个数,则前k行共有个数,第k行最后的一个数为k2,从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列;进而由442<2009<452,可得2009出现在第45行,又由第45行第一个数为442+1=1937,由等差数列的性质,可得该行第37个数为2009,由前44行的数字数目,相加可得答案.
解答:分析图乙,可得①第k行有k个数,则前k行共有个数,
②第k行最后的一个数为k2
③从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列,
又由442=1936,452=2025,则442<2009<452
则2009出现在第45行,
第45行第一个数为442+1=1937,这行中第=37个数为2009,
前44行共有=990个数,则2009为第990+37=1027个数;
故选B.
点评:本题考查归纳推理的运用,关键在于分析乙图,发现每一行的数递增规律与各行之间数字数目的变化规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2011,则n=
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网精英家教网把正整数排列成如图甲三角形数阵,然后擦去第偶行数中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,设aij位于图乙三角形数表中从上往下数第i行第j列的数,若amn=2011,则实数对(m,n)为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•成都一模)把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2009,则n=(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫南九校高三第四次联考理科数学 题型:填空题

把正整数排列成如图甲的三角形数阵,然后擦去第偶数行中的奇数和第奇数行的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若则n=         

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:填空题

(理)把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则__________.

 

 

 

查看答案和解析>>

同步练习册答案